
OpenDaylight

Developer Guide
master (March 4, 2015)

OpenDaylight Developer Guide March 4, 2015 master

ii

OpenDaylight Developer Guide
Opendaylight Community

master (2015-03-04)
Copyright © 2014 Linux Foundation All rights reserved.

This guide describes how to develop using OpenDaylight.

This program and the accompanying materials are made available under the terms of the Eclipse Public License v1.0 which
accompanies this distribution, and is available at http://www.eclipse.org/legal/epl-v10.html

http://www.eclipse.org/legal/epl-v10.html

OpenDaylight Developer Guide March 4, 2015 master

iii

Table of Contents
I. Overview .. 1

1. Getting started with Git and Gerrit ... 3
Overview of Git and Gerrit .. 3
Setting up a Gerrit account ... 3
Generating SSH keys for your system ... 6
Registering your SSH key with Gerrit ... 6

2. Pulling and Pushing the Code from the CLI .. 9
Pulling code via Git CLI ... 9
Setting up Gerrit Change-id Commit Message Hook ... 9
Building the code .. 10
Runing OpenDaylight from local build ... 10
Commit the code using Git CLI .. 11
Pulling the Code changes via Git CLI .. 12
Pushing the Code via Git CLI ... 12

II. Project-Specific Development Guides ... 15
3. Authentication Service ... 20

Authenthentication data model .. 20
How the ODL Authentication Service works ... 21
Configuring Authentication service .. 22
How federated authentication is set up ... 23
Mapping users to roles and domains ... 23
Actors in ODL Authentication Service .. 26
Sub-components of ODL Authentication Service ... 26

4. BGP LS PCEP .. 28
BGPCEP Overview .. 28
Implementing an Extension to PCEP .. 29
Update Configuration ... 29
Implementing an Extension to BGP ... 30
Updating Configuration ... 30
Vendor Information TLV .. 33
Vendor Information Object ... 36

5. Controller .. 40
OpenDaylight Controller: MD-SAL Developers' Guide 41
API types ... 41
Basic YANG concepts and their rendition in APIs .. 41
MD-SAL: Plugin types .. 45
Protocol library .. 46
MD-SAL: Southbound plugin development guide ... 46
Definition of YANG models ... 47
RPCs .. 47
Augmentations .. 49
Best practices .. 49
Implementation ... 49
Notifications .. 50
Best practices .. 50
OpenDaylight Controller: MD-SAL FAQs ... 51
OpenDaylight Controller Configuration: Java Code Generator 58
Service interfaces generating ... 58

OpenDaylight Developer Guide March 4, 2015 master

iv

Runtime beans generating .. 59
OpenDaylight Controller MD-SAL: Restconf .. 59
Mount point ... 60
Something practical ... 64
OpenDaylight Controller: Configuration ... 67
APIs and SPIs ... 69
OpenDaylight Controller configuration: Initial .. 71
Initial configuration for controller .. 71
OpenDaylight Controller configuration: config.ini .. 72
OpenDaylight Controller: Configuration Persister ... 72
Current configuration for controller distribution .. 73
Adding custom initial configuration ... 79
Persister Notification Handler .. 83
MD-SAL architecture: Clustering Notifications .. 86
MD-SAL Architecture: DOM ... 87
MD-SAL: Infinispan Data Store .. 88
State of the POC ... 91
Infinispan-related learnings .. 92
Datastore-related learnings .. 92
No clarity on the closing of Read-Only transactions .. 92
OpenDaylight Controller configuration: FAQs .. 95
OpenDaylight Controller configuration: Component map 95
OpenDaylight Controller: Netconf component map 97
OpenDaylight Controller Configuration: Examples sample project 97
OpenDaylight Controller:Configuration examples user guide 109
OpenDaylight Controller Configuration: Logback Examples 118
Opendaylight Controller: Configuration Logback.xml 125
Configuration example of thread pools using yangcli-pro 126
Configuration example of thread pools using telnet 126
Connecting to plaintext TCP socket ... 126
Configuring threadfactory ... 127
Configuring fixed threadpool ... 130
OpenDaylight Controller MD-SAL: Model reference 131

6. Defense4all .. 132
Defense4All Design .. 132
Defense4All in an ODL Environment .. 133
Framework View ... 134
Application View ... 136
ODL Reps View ... 138
Basic Control Flow ... 141
Configurations and Setup Flow .. 141
Attack Detection Flow ... 142
Attack Mitigation Flow .. 142
Continuity .. 143

7. DLUX ... 146
Setup and Run .. 146
DLUX Modules .. 148
Yang Utils ... 151

8. Group-Based Policy .. 153
Group-Based Policy Architecture Overview ... 154
Policy Model .. 155

OpenDaylight Developer Guide March 4, 2015 master

v

State Repositories .. 169
Renderers .. 170

9. L2Switch .. 189
Checking out the L2Switch project ... 189
Testing your changes to the L2Switch project .. 189
Architecture of the L2Switch project .. 190
Developer’s Guide for Packet Dispatcher .. 191
Developer’s Guide for Loop Remover .. 191
Developer’s Guide for Arp Handler .. 193
Developer’s Guide for Address Tracker .. 195
Developer’s Guide for Host Tracker ... 197
Developer’s Guide for L2Switch Main .. 197

10. Lisp Flow Mapping .. 200
OpenDaylight Locator/ID Separation Protocol (LISP) Flow Mapping
Overview ... 200
LISP Flow Mapping Service .. 201
LISP Service Architecture .. 201
LISP APIs ... 203
LISP Configuration Options .. 203
Developer Tutorial ... 203
LISP Support .. 210
Installing LISP Flow Mapping ... 210

11. ODL-SDNi ... 216
12. OpenFlow Protocol Library .. 217
13. OpenFlow Plugin ... 218

OpenFlow Plugin: Sequence diagrams .. 219
OpenFlow Plugin:Config subsystem .. 223
Message Spy in OF Plugin .. 229
OpenFlow Plugin:Mininet .. 232
Installation .. 232
Usage .. 235
Coding tips for OpenFlow Plugin ... 235
OpenFlow Plugin: Wiring up notifications .. 237
OpenFlow Plugin:Python test scripts .. 239
General ... 240
ODL Test (odl_crud_tests.py) ... 241
Parameters .. 242
Stress Test (stress_test.py) ... 243
Operational Data Test (oper_data_test.py) .. 243
Switch restart (sw_restart_test.py) ... 243
OpenFlow Plugin: Robot framework tests .. 244
TLS support for OF Plugin .. 245
Configuring the ODL OpenFlow plugin .. 247
Configuring openvswitch SSL ... 247
Configuring a hardware switch with TLS .. 248
Open Flow Plugin: Support for extensibility .. 249
Overload protection in the OF Plugin ... 251

14. OVSDB Integration .. 254
OpenDaylight OVSDB integration .. 254
Building and running OVSDB ... 257
OVSDB integration design ... 260

OpenDaylight Developer Guide March 4, 2015 master

vi

OpenDaylight OVSDB southbound plugin architecture and design 260
OVSDB southbound plugin .. 261
Connection service ... 261
Network Configuration Service .. 263
OpenDaylight OVSDB Developer Getting Started Video Series 267
OVSDB integration: New features .. 267

15. Packet Cable MultiMedia (PCMM) ... 275
Checking out the Packetcable PCMM project ... 275
System Overview ... 275
Dependency Map .. 276
Packetcable Components ... 276
Download and Install .. 277
Preparing to Work with the Packetcable PCMM Service 277
Explore and exercise the PacketCable REST API .. 281
RESTCONF API Explorer ... 281
Postman .. 282
Custom Testsuite ... 282
Using Wireshark to Trace PCMM ... 282
Debugging and Verifying DQoS Gate (Flows) on the CMTS 283
Find the Cable Modem .. 283
Arris .. 285
RESTCONF API for Packetcable PCMM ... 285

16. Plugin for OpenContrail ... 289
17. Service Function Chaining .. 290
18. SNBI Developers' Guide .. 291

Defining characteristics of SNBI bootstrapping ... 291
SNBI components .. 291
How SNBI works ... 292

19. SNMP4SDN .. 296
20. TCP-MD5 ... 297
21. Table Type Patterns ... 298

Introduction .. 298
Using The REST APIs .. 299
Limitations ... 309

22. VTN ... 312
Virtual Tenant Network (VTN) ... 312
Hacking VTN Coordinator .. 326
Hacking VTN Manager .. 329
Hacking VTN Manager(Helium) ... 330
Openstack Support Developer Guide ... 332

23. YANG Tools ... 336
Prerequisites for YANG Tools Project ... 336
Pulling code using ssh .. 336
Pulling code using https .. 336
Building the code .. 337
Mapping YANG to Java ... 337
Additional Packages .. 338
Data Interface ... 340
Service Interface .. 340

OpenDaylight Developer Guide March 4, 2015 master

vii

List of Figures
1.1. Signing in to OpenDaylight account .. 4
1.2. Gerrit Account signup/management link .. 4
1.3. Sign-up link for Gerrit account .. 4
1.4. Sign-up with User Name/Password Image ... 5
1.5. Filling out the details .. 5
1.6. Signin in to OpenDaylight repository .. 7
1.7. Settings page for your Gerrit account ... 7
1.8. Adding your SSH key .. 7
2.1. OpenDaylight Main Page .. 10
2.2. Gerritt Code Review Sample ... 13
2.3. Gerritt Code Merge Sample .. 14
5.1. AD-SAL and MD-SAL ... 51
5.2. Plugin development process ... 53
5.3. Flow deleted at controller .. 54
5.4. External app adds flow ... 55
5.5. SAL consumer and producer view ... 57
5.6. Get ... 63
5.7. Put ... 64
5.8. Configuration states ... 68
5.9. Transaction states ... 68
5.10. Persister .. 73
8.1. Group-Based Policy Architecture ... 154
8.2. Policy Model: Contract Selection ... 156
8.3. Policy Model: Clauses and Subject Selection .. 157
8.4. Policy Model: Subject Contents ... 158
8.5. Policy Model: Forwarding ... 159
8.6. GBP OVS Network Topology Example ... 172
8.7. GBP OVS Routing Example .. 175
8.8. GBP OVS Example of Communication With Outside Endpoints 176
8.9. GBP OVS Packet Processing Pipeline .. 177
8.10. GBP OVS ARP Optimization .. 182
10.1. Architecture Overview .. 201
10.2. LISP Mapping Service Internal Architecture ... 202
10.3. Gerritt Code Review Sample ... 214
10.4. Gerritt Code Merge Sample .. 215
13.1. Message Lifecycle ... 219
13.2. Handshake Scenario .. 220
13.3. Connection Sequence (Handshake) Flow Diagram ... 221
13.4. Message Order Preservation ... 222
13.5. Add Flow Sequence .. 222
13.6. Generic Notification Sequence .. 223
13.7. Configure Compiler Errors and Warnings ... 236
13.8. Configure Javadoc .. 237
13.9. OF Plugin support for extensibility .. 249
13.10. Overload protection .. 252
14.1. Avoid conflicting project names .. 256
14.2. Connection to OVSDB server ... 262
14.3. Successful connection handling ... 263

OpenDaylight Developer Guide March 4, 2015 master

viii

14.4. End-to-end handling of a Create Bridge request .. 265
14.5. End-to-end handling of a monitor response ... 266
14.6. Sample workflow .. 271
15.1. System Overview ... 276
15.2. Dependency Map ... 276
15.3. Sign in to Dlux UI ... 279
15.4. View and Manage Flows in Dlux ... 280
15.5. View and Manage Nodes in Dlux .. 280
15.6. Add CMTS using RESTCONF Explorer ... 281
15.7. Postman Collection for Packetcable PCMM .. 282
18.1. Communication between the controller and FE ... 293
21.1. Filling in URL, content, Content-Type and basic auth ... 306
21.2. Refreshing basic auth headers ... 307
21.3. PUTting a TTP ... 308
21.4. Retrieving the TTP as json via a GET .. 308
21.5. Retrieving the TTP as xml via a GET .. 309
22.1. VTN Architecture .. 313
22.2. VTN Coordinator Architecture ... 314
22.3. VTN Manager Architecture ... 315
22.4. VTN Coordinator Architecture ... 316
22.5. VTN Transaction Co ordinator (TC) Architecture .. 318
22.6. VTN ODC Driver Architecture .. 320
22.7. VTN UPLL Architecture ... 322
22.8. VTN UPPL Architecture ... 324
22.9. OpenStack Architecture .. 332

OpenDaylight Developer Guide March 4, 2015 master

ix

List of Tables
10.1. Nodes in the tutorial .. 203
13.1. OpenFlow plugin: Component map .. 218
15.1. Table of Bundle and Components ... 276

Part I. Overview

OpenDaylight Developer Guide March 4, 2015 master

2

Table of Contents
1. Getting started with Git and Gerrit ... 3

Overview of Git and Gerrit .. 3
Setting up a Gerrit account ... 3
Generating SSH keys for your system .. 6
Registering your SSH key with Gerrit ... 6

2. Pulling and Pushing the Code from the CLI .. 9
Pulling code via Git CLI ... 9
Setting up Gerrit Change-id Commit Message Hook ... 9
Building the code .. 10
Runing OpenDaylight from local build ... 10
Commit the code using Git CLI .. 11
Pulling the Code changes via Git CLI .. 12
Pushing the Code via Git CLI ... 12

OpenDaylight Developer Guide March 4, 2015 master

3

1. Getting started with Git and Gerrit

Table of Contents
Overview of Git and Gerrit .. 3
Setting up a Gerrit account ... 3
Generating SSH keys for your system .. 6
Registering your SSH key with Gerrit ... 6

Overview of Git and Gerrit
Git is an opensource distributed version control system (dvcs) written in the C language
and originally developed by Linus Torvalds and others to manage the Linux kernel. In Git,
there is no central copy of the repository. After you have cloned the repository, you have a
functioning copy of the source code with all the branches and tagged releases, in your local
repository.

Gerrit is an opensource web-based collaborative code review tool that integrates with Git.
It was developed at Google by Shawn Pearce. Gerrit provides a framework for reviewing
code commits before they are accepted into the code base. Changes can be uploaded to
Gerrit by any user. However, the changes are not made a part of the project until a code
review is completed. Gerrit is also a good collaboration tool for storing the conversations
that occur around the code commits.

The OpenDaylight source code is hosted in a repository in Git. Developers must use Gerrit
to commit code to the OpenDaylight repository.

Note

For more information on Git, see http://git-scm.com/. For more information on
Gerrit, see https://code.google.com/p/gerrit/.

Setting up a Gerrit account
1. Using a Google Chrome or Mozilla Firefox browser, go to https://git.opendaylight.org/

gerrit

The main page shows existing Gerrit requests. These are patches that have been pushed to
the repository and not yet verified, reviewed, and merged.

Note

If you already have an OpenDaylight account, you can click Sign In in the top
right corner of the page and follow the instructions to enter the OpenDaylight
page.

http://git-scm.com/
https://code.google.com/p/gerrit/
https://git.opendaylight.org/gerrit
https://git.opendaylight.org/gerrit

OpenDaylight Developer Guide March 4, 2015 master

4

Figure 1.1. Signing in to OpenDaylight account

1. If you do not have an existing OpenDaylight account, click Account signup/
management on the top bar of the main Gerrit page.

The WS02 Identity Server page is displayed.

Figure 1.2. Gerrit Account signup/management link

1. In the WS02 Identity Server page, click Sign-up in the left pane.

There is also an option to authenticate your sign in with OpenID. This option is not
described in this document.

Figure 1.3. Sign-up link for Gerrit account

1. Click on the Sign-up with User Name/Password image on the right pane to continue to
the actual sign-up page.

OpenDaylight Developer Guide March 4, 2015 master

5

Figure 1.4. Sign-up with User Name/Password Image

1. Fill out the details in the account creation form and then click Submit.

Figure 1.5. Filling out the details

You now have an OpenDaylight account that can be used with Gerrit to pull the
OpenDaylight code.

OpenDaylight Developer Guide March 4, 2015 master

6

Generating SSH keys for your system
You must have SSH keys for your system to register with your Gerrit account. The method
for generating SSH keys is different for different types of operating systems.

The key you register with Gerrit must be identical to the one you will use later to pull or
edit the code. For example, if you have a development VM which has a different UID login
and keygen than that of your laptop, the SSH key you generate for the VM is different
from the laptop. If you register the SSH key generated on your VM with Gerrit and do not
reuse it on your laptop when using Git on the laptop, the pull fails.

Note

For more information on SSH keys for Ubuntu, see https://help.ubuntu.com/
community/SSH/OpenSSH/Keys. For generating SSH keys for Windows, see
https://help.github.com/articles/generating-ssh-keys.

For a system running Ubuntu operating system, follow the steps below:

1. Run the following command:

mkdir ~/.ssh
chmod 700 ~/.ssh
ssh-keygen -t rsa

1. You are prompted for a location to save the keys, and a passphrase for the keys.

This passphrase protects your private key while it is stored on the hard drive. You must use
the passphrase to use the keys every time you need to login to a key-based system.

Generating public/private rsa key pair.
Enter file in which to save the key (/home/b/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/b/.ssh/id_rsa.
Your public key has been saved in /home/b/.ssh/id_rsa.pub.

Your public key is now available as .ssh/id_rsa.pub in your home folder.

Registering your SSH key with Gerrit
1. Using a Google Chrome or Mozilla Firefox browser, go to https://git.opendaylight.org/

gerrit.

1. Click Sign In to access the OpenDaylight repository.

https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.github.com/articles/generating-ssh-keys
https://git.opendaylight.org/gerrit
https://git.opendaylight.org/gerrit

OpenDaylight Developer Guide March 4, 2015 master

7

Figure 1.6. Signin in to OpenDaylight repository

1. Click your name in the top right corner of the window and then click Settings.

The Settings page is displayed.

Figure 1.7. Settings page for your Gerrit account

1. Click SSH Public Keys under Settings.

2. Click Add Key.

3. In the Add SSH Public Key text box, paste the contents of your id_rsa.pub file and then
click Add.

Figure 1.8. Adding your SSH key

OpenDaylight Developer Guide March 4, 2015 master

8

To verify your SSH key is working correctly, try using an SSH client to connect to Gerrit’s
SSHD port.

$ ssh -p 29418 <sshusername>@git.opendaylight.org
Enter passphrase for key '/home/cisco/.ssh/id_rsa':
**** Welcome to Gerrit Code Review ****
Hi <user>, you have successfully connected over SSH.
Unfortunately, interactive shells are disabled.
To clone a hosted Git repository, use: git clone ssh://
<user>@git.opendaylight.org:29418/REPOSITORY_NAME.git
Connection to git.opendaylight.org closed.

You can now proceed to either Pulling, Hacking, and Pushing the Code from the CLI or
Pulling, Hacking, and Pushing the Code from Eclipse depending on your implementation.

OpenDaylight Developer Guide March 4, 2015 master

9

2. Pulling and Pushing the Code from the CLI

Table of Contents
Pulling code via Git CLI ... 9
Setting up Gerrit Change-id Commit Message Hook .. 9
Building the code .. 10
Runing OpenDaylight from local build ... 10
Commit the code using Git CLI .. 11
Pulling the Code changes via Git CLI .. 12
Pushing the Code via Git CLI ... 12

OpenDayligh is a collection of projects, each with their own code repository. This section
provides a general guide for to pulling, hacking, and pushing the code for each project. For
project specific detail, refer to the project’s section in this guide.

Code reviews are enabled through Gerrit. For setting up Gerrit see the section on Getting
started with Git and Gerrit.

Note

You will need to perform the Gerrit Setup before you can access git via ssh as
described below.

Pulling code via Git CLI
Pull the code by cloning the project’s repository.

 git clone ssh://<username>@git.opendaylight.org:29418/<project_repo_name>.git

where <username> is your OpenDaylight username, and <project_repo_name> is the
name of the repository for project you are trying to pull. Here is the current list of project
repository names:

aaa, affinity, bgpcep, controller, defense4all, dlux, docs, groupbasedpolicy, integration,
l2switch, lispflowmapping, odlparent, opendove, openflowjava, openflowplugin, opflex,
ovsdb, packetcable, reservation, sdninterfaceapp, sfc, snbi, snmp4sdn, toolkit, ttp, vtn,
yangtools.

For an anonymous git clone, you can use:

 git clone https://git.opendaylight.org/gerrit/p/<project_repo_name>.git

Setting up Gerrit Change-id Commit Message
Hook

• This command inserts a unique Change-Id tag in the footer of a commit message. This
step is optional but highly recommended for tracking changes.

 cd <project_repo_name>

OpenDaylight Developer Guide March 4, 2015 master

10

 scp -p -P 29418 <username>@git.opendaylight.org:hooks/commit-msg .git/hooks/
 chmod 755 .git/hooks/commit-msg

• Install and setup Git-review. Git-review is a great tool to simplify the hassle of using
several git commands to submit a patch for review. Refer to How to install and push
codes with git-review for instructions. After initializing git-review, both commit-msg hook
and a remote repo named gerrit will be created and a patch can be submitted to Gerrit
with a single "git review" command.

• Now you can start making your code changes.

Building the code
While you are in the <project_repo_name> directory, run

 mvn clean install

To run without unitests you can skip building those tests running the following:

 mvn clean install -DskipTests
 /* instead of "mvn clean install" */

Runing OpenDaylight from local build
Change to the karaf distribution sub-directory, and run

 ./target/assembly/bin/karaf

At this point the OpenDaylight controller is running. You can now open a web browser and
point your browser at http://localhost:8080/

Figure 2.1. OpenDaylight Main Page

http://www.mediawiki.org/wiki/Gerrit/git-review#Installation%7Chere
http://www.mediawiki.org/wiki/Gerrit/git-review#Installation%7Chere
http://localhost:8080/

OpenDaylight Developer Guide March 4, 2015 master

11

Commit the code using Git CLI

Note

To be accepted, all code mustcome with a developer certificate of origin as
expressed by having a Signed-off-by. This means that you are asserting that you
have made the change and you understand that the work was done as part of
an open-source license.

Developer's Certificate of Origin 1.1

 By making a contribution to this project, I certify that:

 (a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

 (b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

 (c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

 (d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Mechanically you do it this way:

git commit --signoff

You will be prompted for a commit message. If you are fixing a buzilla bug you can add the
associated bug number to your commit message and it will get linked from Gerrit:

For Example:

Fix for bug 2.

Signed-off-by: Ed Warnicke <eaw@cisco.com>
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch develop
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README
#

http://elinux.org/Developer_Certificate_Of_Origin

OpenDaylight Developer Guide March 4, 2015 master

12

Pulling the Code changes via Git CLI
Pull the latest changes from the remote repository

git remote update
git rebase origin/<project_main_branch_name>

where <project_main_branch_name> is the the branch you want to commit to. For most
projects this is master branch. For some projects such as lispflowmapping, a different
branch name (develop in the case of lispflowmapping) should be used.

Pushing the Code via Git CLI
Use git review to push your changes back to the remote repository using:

 git review

You can set a topic for your patch by:

 git review -t <topic>

You will get a message pointing you to your gerrit request like:

==========================
remote: Resolving deltas: 100% (2/2) +
remote: Processing changes: new: 1, refs: 1, done +
remote: +
remote: New Changes: +
remote: http://git.opendaylight.org/gerrit/64 +
remote: +
==========================

The Jenkins Controller User will verify your code and post the result on the your gerrit
request.

Viewing your Changes in Gerrit

Follow the link you got above to see your commit in Gerrit:

OpenDaylight Developer Guide March 4, 2015 master

13

Figure 2.2. Gerritt Code Review Sample

Note that the Jenkins Controller User has verified your code and at the bottom is a link to
the Jenkins build.

Once your code has been reviewed and submitted by a committer it will be merged into
the authoritative repo, which would look like this:

OpenDaylight Developer Guide March 4, 2015 master

14

Figure 2.3. Gerritt Code Merge Sample

Troubleshooting

1. What to do if your Firewall blocks port 29418

There have been reports that many corporate firewalls block port 29418. If that’s the case,
please follow the Setting up HTTP in Gerrit instructions and use git URL:

git clone https://<your_username>@git.opendaylight.org/gerrit/p/
<project_repo_name>.git

You will be prompted for the password you generated in Setting up HTTP in Gerrit.

All other instructions on this page remain unchanged.

To download pre-built images with ODP bootstraps see the following Github project:

Pre-Built OpenDaylight VM Images

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://github.com/nerdalert/OpenDaylight-Lab

Part II. Project-Specific Development Guides

OpenDaylight Developer Guide March 4, 2015 master

16

Table of Contents
3. Authentication Service ... 20

Authenthentication data model .. 20
How the ODL Authentication Service works ... 21
Configuring Authentication service .. 22
How federated authentication is set up ... 23
Mapping users to roles and domains ... 23
Actors in ODL Authentication Service .. 26
Sub-components of ODL Authentication Service .. 26

4. BGP LS PCEP .. 28
BGPCEP Overview .. 28
Implementing an Extension to PCEP .. 29
Update Configuration ... 29
Implementing an Extension to BGP ... 30
Updating Configuration ... 30
Vendor Information TLV ... 33
Vendor Information Object ... 36

5. Controller .. 40
OpenDaylight Controller: MD-SAL Developers' Guide ... 41
API types ... 41
Basic YANG concepts and their rendition in APIs ... 41
MD-SAL: Plugin types .. 45
Protocol library .. 46
MD-SAL: Southbound plugin development guide ... 46
Definition of YANG models ... 47
RPCs .. 47
Augmentations .. 49
Best practices .. 49
Implementation ... 49
Notifications .. 50
Best practices .. 50
OpenDaylight Controller: MD-SAL FAQs ... 51
OpenDaylight Controller Configuration: Java Code Generator 58
Service interfaces generating ... 58
Runtime beans generating .. 59
OpenDaylight Controller MD-SAL: Restconf ... 59
Mount point ... 60
Something practical ... 64
OpenDaylight Controller: Configuration ... 67
APIs and SPIs ... 69
OpenDaylight Controller configuration: Initial .. 71
Initial configuration for controller .. 71
OpenDaylight Controller configuration: config.ini .. 72
OpenDaylight Controller: Configuration Persister ... 72
Current configuration for controller distribution .. 73
Adding custom initial configuration ... 79
Persister Notification Handler .. 83
MD-SAL architecture: Clustering Notifications .. 86
MD-SAL Architecture: DOM ... 87

OpenDaylight Developer Guide March 4, 2015 master

17

MD-SAL: Infinispan Data Store .. 88
State of the POC ... 91
Infinispan-related learnings .. 92
Datastore-related learnings .. 92
No clarity on the closing of Read-Only transactions .. 92
OpenDaylight Controller configuration: FAQs .. 95
OpenDaylight Controller configuration: Component map 95
OpenDaylight Controller: Netconf component map ... 97
OpenDaylight Controller Configuration: Examples sample project 97
OpenDaylight Controller:Configuration examples user guide 109
OpenDaylight Controller Configuration: Logback Examples 118
Opendaylight Controller: Configuration Logback.xml ... 125
Configuration example of thread pools using yangcli-pro 126
Configuration example of thread pools using telnet ... 126
Connecting to plaintext TCP socket ... 126
Configuring threadfactory ... 127
Configuring fixed threadpool .. 130
OpenDaylight Controller MD-SAL: Model reference .. 131

6. Defense4all .. 132
Defense4All Design .. 132
Defense4All in an ODL Environment .. 133
Framework View ... 134
Application View ... 136
ODL Reps View ... 138
Basic Control Flow ... 141
Configurations and Setup Flow .. 141
Attack Detection Flow ... 142
Attack Mitigation Flow .. 142
Continuity ... 143

7. DLUX ... 146
Setup and Run .. 146
DLUX Modules .. 148
Yang Utils ... 151

8. Group-Based Policy .. 153
Group-Based Policy Architecture Overview ... 154
Policy Model .. 155
State Repositories .. 169
Renderers .. 170

9. L2Switch .. 189
Checking out the L2Switch project .. 189
Testing your changes to the L2Switch project .. 189
Architecture of the L2Switch project .. 190
Developer’s Guide for Packet Dispatcher ... 191
Developer’s Guide for Loop Remover .. 191
Developer’s Guide for Arp Handler .. 193
Developer’s Guide for Address Tracker .. 195
Developer’s Guide for Host Tracker ... 197
Developer’s Guide for L2Switch Main .. 197

10. Lisp Flow Mapping .. 200
OpenDaylight Locator/ID Separation Protocol (LISP) Flow Mapping Overview 200
LISP Flow Mapping Service .. 201

OpenDaylight Developer Guide March 4, 2015 master

18

LISP Service Architecture .. 201
LISP APIs ... 203
LISP Configuration Options .. 203
Developer Tutorial ... 203
LISP Support .. 210
Installing LISP Flow Mapping ... 210

11. ODL-SDNi ... 216
12. OpenFlow Protocol Library .. 217
13. OpenFlow Plugin ... 218

OpenFlow Plugin: Sequence diagrams .. 219
OpenFlow Plugin:Config subsystem .. 223
Message Spy in OF Plugin .. 229
OpenFlow Plugin:Mininet .. 232
Installation .. 232
Usage .. 235
Coding tips for OpenFlow Plugin ... 235
OpenFlow Plugin: Wiring up notifications .. 237
OpenFlow Plugin:Python test scripts .. 239
General ... 240
ODL Test (odl_crud_tests.py) ... 241
Parameters .. 242
Stress Test (stress_test.py) ... 243
Operational Data Test (oper_data_test.py) .. 243
Switch restart (sw_restart_test.py) ... 243
OpenFlow Plugin: Robot framework tests .. 244
TLS support for OF Plugin .. 245
Configuring the ODL OpenFlow plugin .. 247
Configuring openvswitch SSL ... 247
Configuring a hardware switch with TLS .. 248
Open Flow Plugin: Support for extensibility ... 249
Overload protection in the OF Plugin .. 251

14. OVSDB Integration .. 254
OpenDaylight OVSDB integration .. 254
Building and running OVSDB ... 257
OVSDB integration design ... 260
OpenDaylight OVSDB southbound plugin architecture and design 260
OVSDB southbound plugin .. 261
Connection service ... 261
Network Configuration Service .. 263
OpenDaylight OVSDB Developer Getting Started Video Series 267
OVSDB integration: New features .. 267

15. Packet Cable MultiMedia (PCMM) ... 275
Checking out the Packetcable PCMM project ... 275
System Overview ... 275
Dependency Map .. 276
Packetcable Components ... 276
Download and Install .. 277
Preparing to Work with the Packetcable PCMM Service 277
Explore and exercise the PacketCable REST API .. 281
RESTCONF API Explorer ... 281
Postman .. 282

OpenDaylight Developer Guide March 4, 2015 master

19

Custom Testsuite ... 282
Using Wireshark to Trace PCMM ... 282
Debugging and Verifying DQoS Gate (Flows) on the CMTS 283
Find the Cable Modem .. 283
Arris .. 285
RESTCONF API for Packetcable PCMM ... 285

16. Plugin for OpenContrail ... 289
17. Service Function Chaining .. 290
18. SNBI Developers' Guide .. 291

Defining characteristics of SNBI bootstrapping ... 291
SNBI components .. 291
How SNBI works ... 292

19. SNMP4SDN .. 296
20. TCP-MD5 ... 297
21. Table Type Patterns ... 298

Introduction .. 298
Using The REST APIs .. 299
Limitations ... 309

22. VTN ... 312
Virtual Tenant Network (VTN) ... 312
Hacking VTN Coordinator .. 326
Hacking VTN Manager .. 329
Hacking VTN Manager(Helium) ... 330
Openstack Support Developer Guide ... 332

23. YANG Tools ... 336
Prerequisites for YANG Tools Project ... 336
Pulling code using ssh .. 336
Pulling code using https .. 336
Building the code .. 337
Mapping YANG to Java ... 337
Additional Packages .. 338
Data Interface ... 340
Service Interface .. 340

OpenDaylight Developer Guide March 4, 2015 master

20

3. Authentication Service

Table of Contents
Authenthentication data model .. 20
How the ODL Authentication Service works .. 21
Configuring Authentication service .. 22
How federated authentication is set up ... 23
Mapping users to roles and domains ... 23
Actors in ODL Authentication Service .. 26
Sub-components of ODL Authentication Service .. 26

Authentication uses the credentials presented by a user to identify the user.

Authenthentication data model
A user requests authentication within a domain in which the user has defined roles. The
user chooses either of the following ways to request authentication:

• Provides credentials

• Creates a token scoped to a domain. In OpenDaylight, a domain is a grouping of
resources (direct or indirect, physical, logical, or virtual) for the purpose of access control.

Terms and definitions in the model

Token A claim of access to a group of resources on the controller

Domain A group or isolation of resources, direct or indirect, physical, logical, or
virtual, for the purpose of access control

User A person who either owns and has, or has, access to a resource or group of
resources on the controller

Role Opaque representation of a set of permissions, which is merely a unique
string as admin or guest

Credential Proof of identity such as username and password, OTP, biometrics, or
others

Client A service or application that requires access to the controller

Authentication methods

There are three ways a user may authenticate in OpenDaylight:

• Token-based Authentication

OpenDaylight Developer Guide March 4, 2015 master

21

• Direct authentication: A user presents username/password and a domain the user
wishes to access to the controller and obtains a timed (default is 1 hour) scoped access
token. The user then uses this token to access Restconf (for example).

• Federated authentication: A user presents credentials to a third-party Identity Provider
(for example, SSSD) trusted by the controller. Upon successful authentication, the
controller returns a refresh (unscoped) token with a list of domains that the user has
access to. The user then presents this refresh token scoped to a domain that the user
has access to obtain a scoped access token. The user then uses this access token to
access Restconf (for example).

• Basic Authentication

For backward compatibility with the ODL Hydrogen release, the controller also
supports the normal basic authentication with username/password.

Example with token authentication using curl (username/password =
admin/admin, domain = sdn):

Create a token
curl -ik -d 'grant_type=password&username=admin&password=admin&scope=sdn'
 http://localhost:8181/oauth2/token

Use the token (e.g., ed3e5e05-b5e7-3865-9f63-eb8ed5c87fb9) obtained from
 above (default token validity is 1 hour):
curl -ik -H 'Authorization:Bearer ed3e5e05-b5e7-3865-9f63-eb8ed5c87fb9'
 http://localhost:8181/restconf/config/toaster:toaster

Example with basic auth using curl:

curl -ik -u 'admin:admin' http://localhost:8181/restconf/config/
toaster:toaster

How the ODL Authentication Service works
In direct authentication, a service relationship exists between the user and the ODL
controller. The user and the controller establish trust that allows them to use, and validate
credentials. The user establishes user identity through credentials.

In direct authentication, a user request progresses through the following steps:

1. The user requests the controller administrator for a user account.

Associated with the user account are user credentials, initially created by the
administrator. Opendaylight supports only username/password credentials. By
default, an administrator account is included with ODL out-of-the-box the username
and password for which are admin/admin. In addition to creating the user account,
the controller administrator also assigns roles to that account on one or more
domains. By default, there are two user roles: admin and user. By default, there is only
one domain: sdn.

2. The user presents the credentials to the service within a domain in a request for a token.

OpenDaylight Developer Guide March 4, 2015 master

22

3. The request is then passed on to the controller token endpoint.

4. The controller token endpoint sends it to the credential authentication entity which
returns a claim for the client.

5. The controller token entity transforms the claim (for user, domain, and roles) into a
token which it then provides to the user.

In federated authentication, with the absence of a direct trust relationship between
the user and the service, a third-party Identity Provider (IdP) is used for authentication.
Federated authentication relies on third-party identity providers (IdP) to authenticate the
user. An example of an external IdP is Linux SSSD (System Security Services Daemon) or
Openstack Keystone.

The user is authenticated by the trusted IdP and a claim is returned to the ODL
authentication services upon successful authentication. The claim is mapped into ODL users
or roles and transformed into a token that is passed onto the user. The request is passed
on to the claim authentication broker that transforms it to a claim. The controller turns the
claim into a token that is passed on to the user.

In a federated authentication set-up, the Opendaylight controller extends SSSD claim
support. SSSD also provides mapping capabilities. SSSD maps users in an external LDAP
server to users defined on the Opendaylight controller.

Configuring Authentication service
Changes to AAA configurations can be made from the following:

• Webconsole

• CLI (config command in the Karaf shell)

• Editing the etc/org.opendaylight.aaa.*.cfg files directly

Every Authentication Service karaf feature has its configuration file.

Note

Configurations for AAA are all dynamic and require no restart.

To configure features from the Web console:

1. Install the Web console:

feature:install webconsole

1. On the console (http://localhost:8181/system/console) (default Karaf username/
password: karaf/karaf), go to OSGi > Configuration > ODL AAA Authentication
Configuration.

a. Authorized Clients: List of software clients that are authorized to access ODL NB APIs.

b. Enable Authentication: Enable or disable authentication. (The default is enable.)

http://localhost:8181/system/console

OpenDaylight Developer Guide March 4, 2015 master

23

Configuring tokens

1. On the console, click ODL AAA Token Configuration.

The fields you can configure are as follows:

a. Memory Configuration: Configure the maximum number of tokens to be retained
in memory.

b. Disk Configuration: The maximum number of tokens to be retained on the disk.

Note

When Memory is exhausted, tokens are moved to the disk.

a. Token Expiration: The number of seconds that a token remains live irrespective of use.

b. Unused Token Expiration: The number of seconds that a token is live without being
accessed. (The default period for both Expiration fields is 1 hour or 3600 seconds.)

Configuring AAA federation

1. On the console, click ODL AAA Federation Configuration.

2. Use the Custom HTTP Headers or Custom HTTP Attributes fields to specify the HTTP
headers or attributes for federated authentication. Normally, such specification is not
required.

Note

As the changes you make to the configurations are automatically committed
when they are saved, no restart of the Authentication service is required.

How federated authentication is set up
Use the following steps to set up federated authentication:

1. Set up an Apache front-end and Apache mods for the ODL controller.

2. Set up mapping rules (from LDAP users to ODL users).

3. Use the ClaimAuthFilter in federation to allow claim transformation.

Mapping users to roles and domains
The ODL authentication service transforms assertions from an external federated IdP into
Authentication Service data:

1. The Apache web server which fronts ODL AAA sends data to SssdAuthFilter.

2. SssdAuthFilter constructs a JSON document from the data.

OpenDaylight Developer Guide March 4, 2015 master

24

3. ODL Authentication Service uses a general purpose transformation mapper to transform
the JSON document.

Operational model

The mapping model works as follows:

1. Assertions from an IdP are stored in an associative array.

2. A sequence of rules is applied, and the first rule which returns success is considered a
match.

3. Upon success, an associative array of mapped values is returned.

• The mapped values are taken from the local variables set during the rule execution.

• The definition of the rules and mapped results are expressed in JSON notation.

Operational Model: Sample code
mapped = null
foreach rule in rules {
 result = null
 initialize rule.variables with pre-defined values

 foreach block in rule.statement_blocks {
 for statement in block.statements {
 if statement.verb is exit {
 result = exit.status
 break
 }
 elif statement.verb is continue {
 break
 }
 }
 if result {
 break
 }
 if result == null {
 result = success
 }
if result == success {
 mapped = rule.mapping(rule.variables)
}
return mapped

Mapping Users

A JSON Object acts as a mapping template to produce the final associative array of name/
value pairs. The value in a name/value pair can be a constant or a variable. An example of a
mapping template and rule variables in JSON: Template:

{
 "organization": "BigCorp.com",
 "user: "$subject",
 "roles": "$roles"

OpenDaylight Developer Guide March 4, 2015 master

25

}

Local variables:

{
 "subject": "Sally",
 "roles": ["user", "admin"]
}

The final mapped result will be:

{
 "organization": "BigCorp.com",
 "user: "Sally",
 "roles": ["user", "admin"]
}

Example: Splitting a fully qualified username into user and
realm components

Some IdPs return a fully qualified username (for example, principal or subject). The fully
qualified username is the concatenation of the user name, separator, and realm name.
The following example shows the mapped result that returns the user and realm as
independent values for the fully qualified username is bob@example.com .

The mapping in JSON:

{
 "user": "$username",
 "realm": "$domain"
}

The assertion in JSON:

{
 "Principal": "bob@example.com"
}

The rule applied:

[
 [
 ["in", "Principal", "assertion"],
 ["exit", "rule_fails", "if_not_success"],
 ["regexp", "$assertion[Principal]", (?P<username>\\w+)@(?P<domain>.
+)"],
 ["set", "$username", "$regexp_map[username]"],
 ["set", "$domain", "$regexp_map[domain]"],
 ["exit, "rule_succeeds", "always"]
]
]

The mapped result in JSON:

{
 "user": "bob",
 "realm": "example.com"
}

mailto:bob@example.com

OpenDaylight Developer Guide March 4, 2015 master

26

Also, users may be granted roles based on their membership in certain groups.

The Authentication Service allows white lists for users with specific roles. The white lists
ensure that users are unconditionally accepted and authorized with specific roles. Users
who must be unconditionally denied access can be placed in a black list.

Actors in ODL Authentication Service
ODL Controller administrator The ODL Controller administrator has the following
responsibilities:

• Authors Authentication policies using the REST API

• Provides credentials, usernames and passwords to users who request them

ODL resource owners Resource owners authenticate (either by means of federation or
directly providing their own credentials to the controller) to obtain an access token. This
access token can then be used to access resources on the controller. An ODL resource
owner enjoys the following privileges:

• Creates, refreshes, or deletes access tokens

• Gets access tokens from the Secure Token Service

• Passes secure tokens to resource users

ODL resource users Resource users do not need to authenticate: they can access resources
if they are given an access tokens by the resource owner. The default timeout for access
tokens is 1 hour (This duration is configurable.). An ODL resource user does the following:

• Gets access tokens either from a resource owner or the controller administrator

• Uses tokens at access applications from the north-bound APIs

Sub-components of ODL Authentication Service
AuthX authoring service Provides AuthN and AuthZ Authoring service

Light-weight Identity Manager
(IdmLight)

Stores local user authentication and authorization data,
and roles Provides an Admin REST API for CRUD users/
roles/domains

Pluggable authenticators Provides domain-specific authentication mechanisms

Authenticator Authenticates users against the authentication policy
and establishes claims

Authentication Cache Caches all authentication states and tokens

Authentication Filter Verifies tokens and extracts claims

Authentication Manager Contains the session token and authentication claim
store

OpenDaylight Developer Guide March 4, 2015 master

27

ODL Authorization Service

In progress is the addition of an authorization feature to the authentication service.
Authorization will follow successful authentication. Modelled on the Role Based Access
Control (RBAC) approach for authentication, the Authorization service will assign roles that
define permissions and decide access levels. Authorization will do the following:

• Verify the operations the user or service is authorized to do

• Enforce policies to grant or deny access to resources

OpenDaylight Developer Guide March 4, 2015 master

28

4. BGP LS PCEP

Table of Contents
BGPCEP Overview .. 28
Implementing an Extension to PCEP .. 29
Update Configuration ... 29
Implementing an Extension to BGP ... 30
Updating Configuration .. 30
Vendor Information TLV ... 33
Vendor Information Object ... 36

BGPCEP Overview
An extension to a protocol means adding parsers and serializers for new elements, such
as messages, objects, TLVs or subobjects. This is necessary when you are extending the
protocol with another RFC or draft. Both BGP and PCEP parsers are pluggable and you can
specify which extensions to load alongside to the base parser in the configuration file.

Writing an extension to PCE protocol Current standards support Current pcep base-parser
implementation supports following RFCs:

RFC5440 - Path Computation Element (PCE) Communication Protocol (PCEP) RFC5541
- Encoding of Objective Functions in the Path Computation Element Communication
Protocol (PCEP) RFC5455 - Diffserv-Aware Class-Type Object for the Path Computation
Element Communication Protocol RFC5521 - Extensions to the Path Computation Element
Communication Protocol (PCEP) for Route Exclusions RFC5557 - Path Computation Element
Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global
Concurrent Optimization

There are already two extensions for: draft-ietf-pce-stateful-pce - in versions 02 and 07
draft-ietf-pce-pce-initiated-lsp - versions crabbe-initiated-00 and ietf-initiated-00

dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>pcep-ietf-stateful02</artifactId>
</dependency>

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>pcep-ietf-stateful07</artifactId>
</dependency>

Note

It is important to load the extensions with compatible versions because that
they extend each other. In this case crabbe-initiated-00 is compatible with
stateful-02 and ietf-initiated-00 is compatible with stateful-07.

http://tools.ietf.org/html/rfc5440
http://tools.ietf.org/html/rfc5541
http://tools.ietf.org/html/rfc5455
http://tools.ietf.org/html/rfc5521
http://tools.ietf.org/html/rfc5557
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-09
https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-01

OpenDaylight Developer Guide March 4, 2015 master

29

Implementing an Extension to PCEP
To implement an extension of PCEP:

1. Create a separate artefact (eclipse project) for your extension. Ensure the dependency
on pcep-api and pcep-spi.

2. Write YANG model for new elements or augment existing ones.

3. Perform mvn install to generate files from the model.

4. Write parsers and serializers. All parsers need to implement *Parser and *Serializer
interfaces from pcep-spi, (For example: If you are writing a new TLV, your
parser must implement TlvParser and TlvSerializer), add Activator, that extends
AbstractPCEPExtensionProviderActivator, where you register your parsers and serializers.

Update Configuration
Update [32-pcep.xml]. Register your parser as a module in pcep-impl:

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:impl">
 prefix:pcep-parser-new-parser
 </type>
 <name>pcep-parser-new-parser</name>
</module>

• Add it as an extension to pcep-parser-base:

<extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-new-parser</name>
</extension>

• Add the instance to services:

<instance>
 <name>pcep-parser-new-parser</name>
 <provider>/config/modules/module[name='pcep-parser-new-parser']/
instance[name='pcep-parser-new-parser']</provider>
</instance>

• Update odl-pcep-impl-cfg.yang so that it generates Module and ModuleFactory
classes for your new parser.

identity pcep-parser-new-parser {
 base config:module-type;
 config:provided-service spi:extension;
 config:java-name-prefix NewParserPCEPParser;
}

augment "/config:modules/config:module/config:configuration" {

OpenDaylight Developer Guide March 4, 2015 master

30

 case pcep-parser-new-parser {
 when "/config:modules/config:module/config:type = 'pcep-parser-new-parser'";
 }
}

Run mvn install on pcep-impl-config to generate Module and ModuleFactory files. * Update
Module to start your NewParserPCEPParserModule.java whent it’s created

@Override
public java.lang.AutoCloseable createInstance() {
 return new InitiatedActivator();
}

Writing an Extension to BGP

Current standards support

Current bgp base-parser implementation supports following RFCs:

RFC4271 - A Border Gateway Protocol 4 (BGP-4) RFC4724 - Graceful Restart Mechanism for
BGP RFC4760 - Multiprotocol Extensions for BGP-4 RFC1997 - BGP Communities Attribute
RFC4360 - BGP Extended Communities Attribute RFC6793 - BGP Support for Four-Octet
Autonomous System (AS) Number Space (NEW speaker only)

There is already one extension for: draft-ietf-idr-ls-distribution - in version 04

Implementing an Extension to BGP
To implement an extension to BGP:

1. Create a separate artefact (eclipse project) for your extension. Ensure it depends on
pcep-api and pcep-spi.

2. Write yang model for new elements or augment existing ones.

3. Perform mvn install to generate files from the model.

4. Write parsers and serializers. All parsers need to implement Parser and Serializer
interfaces from bgp-spi. For example: If you are writing a new capability, your parser
should implement CapabilityParser and CapabilitySerializer). Add Activator, that extends
AbstractBGPExtensionProviderActivator, where you register your parsers and serializers.
If your extension adds another AFI/SAFI you must to add another Activator that
extends AbstractRIBExtensionProviderActivator and registrate new address family and
subsequent address family.

Updating Configuration
Update 31-bgp.xml. Register your parser as a module in bgp-impl:

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:new-
parser">

http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc4724
http://tools.ietf.org/html/rfc4760
http://tools.ietf.org/html/rfc1997
http://tools.ietf.org/html/rfc4360
http://tools.ietf.org/html/rfc6793
https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-06

OpenDaylight Developer Guide March 4, 2015 master

31

 prefix:bgp-new-parser
 </type>
 <name>bgp-new-parser</name>
</module>

• Add it as an extension to bgp-parser-base:

<extension>
 <type
 xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">
 bgpspi:extension
 </type>
 <name>bgp-new-parser</name>
</extension>

• Add the instance to services:

<instance>
 <name>bgp-new-parser</name>
 <provider>/modules/module[type='bgp-new-parser'][name='bgp-new-parser']</
provider>
</instance>

Also, if you are introducing new AFI/SAFI, do not forget to registrate your extension also to
RIB.

• Create your own configuration file so that it generates Module and ModuleFactory
classes for your new parser.

identity bgp-new-parser {
 base config:module-type;
 config:provided-service bgpspi:extension;
 config:provided-service ribspi:extension; // for new AFI/SAFI
 config:java-name-prefix NewParser;
}

augment "/config:modules/config:module/config:configuration" {
 case bgp-new-parser {
 when "/config:modules/config:module/config:type = 'bgp-new-
parser'";
 }
}

Run mvn install on your extension artefact to generate Module and ModuleFactory files.

• Update Module to start your NewParserModule.java whent it’s created.

@Override
public java.lang.AutoCloseable createInstance() {
 return new NewParserActivator();
}

Programmatic Interface(s)

Howto pull code from gerrit: OpenDaylight Controller:Pulling, Hacking, and Pushing the
Code from the CLI Gerrit repository: gerrit Bugzilla: Bugzilla Mailing lists

• bgpcep-bugs@opendaylight.org

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Pulling,_Hacking,_and_Pushing_the_Code_from_the_CLI
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Pulling,_Hacking,_and_Pushing_the_Code_from_the_CLI
https://git.opendaylight.org/gerrit/bgpcep
https://bugs.opendaylight.org/
mailto:bgpcep-bugs@opendaylight.org

OpenDaylight Developer Guide March 4, 2015 master

32

• bgpcep-dev@opendaylight.org

YANG Models - BGP LS PCEP:Models

API Documentation – Javadoc API

For debugging purposes, set lower log levels for bgpcep project in logback.xml.

<logger name="org.opendaylight.protocol" level="TRACE" />
<logger name="org.opendaylight.bgpcep" level="TRACE" />

Vendor Specific Constraints in PCEP
draft-ietf-pce-rfc7150bis-00 - Conveying Vendor-Specific Constraints in the Path
Computation Element communication Protocol.

Draft defines new PCEP object - Vendor Information object, that can be used to carry
arbitrary, proprietary information such as vendor-specific constraints. Draft also defines
new PCEP TLV - Vendor Information TLV that can be used to carry arbitrary information
within any PCEP object that supports TLVs.

The ODL PCEP supports draft-ietf-pce-rfc7150bis-00 and provides abstraction for developers
to create vendor-specific TLVs/objects extensions. The yang model of vendor-information-
tlv/object is defined in pcep-types.yang and used in pcep objects/messages as defined in the
draft.

This tutorial shows how to develop PCEP extension of vendor-information object and TLV
for fictional company named My Vendor, whose enterprise number is 0. A result will be
OSGi bundle and initial configuration xml file, that supports MY-VENDOR-TLV and MY-
VENDOR-OBJECT in ODL.

• First, create simple maven module named pcep-my-vendor. For simplification assume the
module parent is pcep maven project. For bundle packaging add plugin maven-bundle-
plugin into pom.xml and also yang-maven-plugin for compile-time java code generating.

<artifactId>pcep-my-vendor</artifactId>
 <description>PCEP MY VENDOR EXTENSION</description>
 <packaging>bundle</packaging>
 <name>${project.artifactId}</name>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-Name>${project.groupId}.${project.artifactId}</Bundle-
Name>
 </instructions>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 </plugin>
 </plugins>

mailto:bgpcep-dev@opendaylight.org
https://jenkins.opendaylight.org/bgpcep/job/bgpcep-nightly/lastSuccessfulBuild/artifact/target/staging/releasepom/apidocs/index.html
https://wiki.opendaylight.org/view/BGP_LS_PCEP:Models
http://tools.ietf.org/html/draft-ietf-pce-rfc7150bis-00

OpenDaylight Developer Guide March 4, 2015 master

33

 </build>

• Add required dependencies into pom.xml.

 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>config-api</artifactId>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>pcep-api</artifactId>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>pcep-spi</artifactId>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>pcep-impl</artifactId>
 </dependency>
 </dependencies>

Vendor Information TLV
The Vendor Information TLV is used for vendor-specific information that applies to a
specific PCEP object by including the TLV in the object. For the purpose of this tutorial,
define MY-VENDOR-TLV, which can be loaded wih just simple unsigned 32-bit integer (4
bytes) as it’s value and the TLV is carried in Open object.

Yang model

• Initial step is to extend pcep-types and pcep-message yang models, augmentation target
is enterprise-specific-information (choice) located in Open messages’s Open object. Create
yang file (pcep-my-vendor.yang), in project’s src/main/yang folder, with definition of the
vendor information and required augmentations.

• Now build project with maven, after that generated Java API’s appears in target/
generated-sources/sal.

grouping my-vendor-information {
 leaf payload {
 type uint32;
 }
}
augment "/msg:open/msg:open-message/msg:open/msg:tlvs/msg:vendor-information-
tlv/msg:enterprise-specific-information" {
 case my-vendor {
 when "enterprise-number = 0";
 uses my-vendor-information;
 }
}

• Vendor Information TLV parser/serializer

• Next step is an implementation of the enterprise-specific-information (TLV’s value)
parser/serializer. It is simple serialization/deserialization of unsigned integer

OpenDaylight Developer Guide March 4, 2015 master

34

(long type in Java representation), other functionality is already presented in
org.opendaylight.protocol.pcep.impl.tlv.AbstractVendorInformationTlvParser abstract
class. Create class extending AbstractVendorInformationTlvParser and implement missing
methods.

public class MyVendorInformationTlvParser extends
 AbstractVendorInformationTlvParser {
 private static final EnterpriseNumber EN = new EnterpriseNumber(0L);
 @Override
 public EnterpriseNumber getEnterpriseNumber() {
 return EN;
 }
 @Override
 public EnterpriseSpecificInformation
 parseEnterpriseSpecificInformation(final ByteBuf buffer)
 throws PCEPDeserializerException {
 return new
 MyVendorBuilder().setPayload(buffer.readUnsignedInt()).build();
 }
 @Override
 public void serializeEnterpriseSpecificInformation(final
 EnterpriseSpecificInformation esi, final ByteBuf buffer) {
 final MyVendor myVendorInfo = (MyVendor) esi;
 buffer.writeInt(myVendorInfo.getPayload().intValue());
 }
}

Vendor Information TLV Activator

• Now, parser/serializer needs to be registered to VendorInformationTlvRegistry. Create
class extending AbstractPCEPExtensionProviderActivator and implement startImpl
method - register parser idenfied by enterprise number and register serializer identified
by the class extending EnterpriseSpecificInformation.

public class Activator extends AbstractPCEPExtensionProviderActivator {
 @Override
 protected List<AutoCloseable> startImpl(PCEPExtensionProviderContext
 context) {
 final List<AutoCloseable> regs = new ArrayList<>();
 final MyVendorInformationTlvParser parser = new
 MyVendorInformationTlvParser();

 regs.add(context.registerVendorInformationTlvParser(parser.getEnterpriseNumber(),
 parser));

 regs.add(context.registerVendorInformationTlvSerializer(MyVendor.class,
 parser));
 return regs;
 }
 }

Configuration Module

• Create configuration yang module with name i.e. pcep-my-vendor-cfg.yang. Define My
Vendor parser extension service provider config module.

• Build project with maven to generate cofiguration module and module factory. They are
located in src/main/java.

OpenDaylight Developer Guide March 4, 2015 master

35

• Implement MyVendorPCEPParserModule#createInstance() - return instance of Activator
created above.

identity pcep-parser-my-vendor {
 base config:module-type;
 config:provided-service spi:extension;
 config:java-name-prefix MyVendorPCEPParser;
}
augment "/config:modules/config:module/config:configuration" {
 case pcep-parser-my-vendor {
 when "/config:modules/config:module/config:type = 'pcep-parser-my-
vendor'";
 }
}

@Override
 public java.lang.AutoCloseable createInstance() {
 return new Activator();
 }

Initial Configuration

Create initial configuration xml file, where module pcep-parser-my-vendor is instantiated
and injected into the global-pcep-extensions.

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:pcep:spi?
module=odl-pcep-spi-cfg&revision=2013-11-15</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:pcep:my:vendor:cfg?
module=pcep-my-vendor-cfg&revision=2014-09-20</capability>
 </required-capabilities>
 <configuration>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules
 xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">prefix:pcep-
extensions-impl</type>
 <name>global-pcep-extensions</name>
 <extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-my-vendor</name>
 </extension>
 </module>
 <module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:my:vendor:cfg">
 prefix:pcep-parser-my-vendor
 </type>
 <name>pcep-parser-my-vendor</name>
 </module>
 </modules>
 <services
 xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">

OpenDaylight Developer Guide March 4, 2015 master

36

 <service>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <instance>
 <name>pcep-parser-my-vendor</name>
 <provider>/config/modules/module[name='pcep-parser-my-
vendor']/instance[name='pcep-parser-my-vendor']</provider>
 </instance>
 </service>
 </services>
 </data>
 </configuration>
</snapshot>

Vendor Information Object
For the tutorial purposes, define MY-VENDOR-OBJECT, which can be loaded with Ipv4
address (4 bytes) as it’s value and the object is carried in PCRep message’s response.

Yang Model

• Initial step is to extend pcep-types and pcep-message yang models, augmentation target
is enterprise-specific-information (choice) located in PCRep messages. Create yang file
(pcep-my-vendor.yang), in project src/main/yang folder, with definition of the vendor
information and required augmentations.

• Now build project with maven, after that generated Java API’s appears in target/
generated-sources/sal.

grouping my-vendor-information {
 leaf payload {
 type inet:ipv4-address;
 }
}
 augment "/msg:pcrep/msg:pcrep-message/msg:replies/msg:vendor-information-
object/msg:enterprise-specific-information" {
 case my-vendor {
 when "enterprise-number = 0";
 uses my-vendor-information;
 }
}

Vendor Information Object Parser/Serializer

• Implementation of the enterprise-sepecific-information (Object
value) parser/serializer. It is simple serialization/deserialization
of IPv4 address, other functionality is already presented in
org.opendaylight.protocol.pcep.impl.object.AbstractVendorInformationObjectParser
abstract class. Create class extending AbstractVendorInformationObjectParser and
implement missing methods.

public class MyVendorInformationObjectParser extends
 AbstractVendorInformationObjectParser {
 private static final EnterpriseNumber EN = new EnterpriseNumber(0L);
 @Override

OpenDaylight Developer Guide March 4, 2015 master

37

 public EnterpriseNumber getEnterpriseNumber() {
 return EN;
 }
 @Override
 public EnterpriseSpecificInformation
 parseEnterpriseSpecificInformation(final ByteBuf buffer)
 throws PCEPDeserializerException {
 return new
 MyVendorBuilder().setPayload(Ipv4Util.addressForByteBuf(buffer)).build();
 }
 @Override
 public void serializeEnterpriseSpecificInformation(final
 EnterpriseSpecificInformation esi, final ByteBuf buffer) {
 final MyVendor myVendor = (MyVendor) esi;
 buffer.writeBytes(Ipv4Util.bytesForAddress(myVendor.getPayload()));
 }
}

Vendor Information Object Activator

Parser/serializer must be registered to VendorInformationObjectRegistry. Create class
extending AbstractPCEPExtensionProviderActivator and implement startImpl method -
register parser idenfied by enterprise number and register serializer identified by the class
extending EnterpriseSpecificInformation.

public class Activator extends AbstractPCEPExtensionProviderActivator {
 @Override
 protected List<AutoCloseable> startImpl(PCEPExtensionProviderContext
 context) {
 final List<AutoCloseable> regs = new ArrayList<>();
 final MyVendorInformationObjectParser parser = new
 MyVendorInformationObjectParser();

 regs.add(context.registerVendorInformationObjectParser(parser.getEnterpriseNumber(),
 parser));

 regs.add(context.registerVendorInformationObjectSerializer(MyVendor.class,
 parser));
 return regs;
 }
 }

Configuration Module

• Create configuration yang module with name (pcep-my-vendor-cfg.yang).

• Define My Vendor parser extension service provider configuration module.

• Build project with maven to generate configuration module and module factory located
in src/main/java.

• Implement MyVendorPCEPParserModule#createInstance() - return instance of Activator
created.

identity pcep-parser-my-vendor {
 base config:module-type;
 config:provided-service spi:extension;
 config:java-name-prefix MyVendorPCEPParser;
}

OpenDaylight Developer Guide March 4, 2015 master

38

augment "/config:modules/config:module/config:configuration" { case pcep-parser-my-
vendor { when "/config:modules/config:module/config:type = pcep-parser-my-vendor"; } }

 @Override
 public java.lang.AutoCloseable createInstance() {
 return new Activator();
 }

Initial Configuration

Create initial configuration xml file, where module pcep-parser-my-vendor is instantiated
and injected into the global-pcep-extensions.

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:pcep:spi?
module=odl-pcep-spi-cfg&revision=2013-11-15</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:pcep:my:vendor:cfg?
module=pcep-my-vendor-cfg&revision=2014-09-20</capability>
 </required-capabilities>
 <configuration>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules
 xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 prefix:pcep-extensions-impl
 </type>
 <name>global-pcep-extensions</name>
 <extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-my-vendor</name>
 </extension>
 </module>
 <module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:my:vendor:cfg">
 prefix:pcep-parser-my-vendor
 </type>
 <name>pcep-parser-my-vendor</name>
 </module>
 </modules>
 <services
 xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <instance>
 <name>pcep-parser-my-vendor</name>
 <provider>/config/modules/module[name='pcep-parser-my-
vendor']/instance[name='pcep-parser-my-vendor']</provider>
 </instance>
 </service>

OpenDaylight Developer Guide March 4, 2015 master

39

 </services>
 </data>
 </configuration>
</snapshot>

OpenDaylight Developer Guide March 4, 2015 master

40

5. Controller

Table of Contents
OpenDaylight Controller: MD-SAL Developers' Guide ... 41
API types ... 41
Basic YANG concepts and their rendition in APIs ... 41
MD-SAL: Plugin types .. 45
Protocol library .. 46
MD-SAL: Southbound plugin development guide ... 46
Definition of YANG models ... 47
RPCs .. 47
Augmentations .. 49
Best practices .. 49
Implementation ... 49
Notifications .. 50
Best practices .. 50
OpenDaylight Controller: MD-SAL FAQs ... 51
OpenDaylight Controller Configuration: Java Code Generator .. 58
Service interfaces generating ... 58
Runtime beans generating .. 59
OpenDaylight Controller MD-SAL: Restconf ... 59
Mount point ... 60
Something practical ... 64
OpenDaylight Controller: Configuration ... 67
APIs and SPIs .. 69
OpenDaylight Controller configuration: Initial .. 71
Initial configuration for controller ... 71
OpenDaylight Controller configuration: config.ini .. 72
OpenDaylight Controller: Configuration Persister ... 72
Current configuration for controller distribution .. 73
Adding custom initial configuration ... 79
Persister Notification Handler .. 83
MD-SAL architecture: Clustering Notifications .. 86
MD-SAL Architecture: DOM ... 87
MD-SAL: Infinispan Data Store .. 88
State of the POC ... 91
Infinispan-related learnings .. 92
Datastore-related learnings ... 92
No clarity on the closing of Read-Only transactions .. 92
OpenDaylight Controller configuration: FAQs .. 95
OpenDaylight Controller configuration: Component map .. 95
OpenDaylight Controller: Netconf component map ... 97
OpenDaylight Controller Configuration: Examples sample project 97
OpenDaylight Controller:Configuration examples user guide .. 109
OpenDaylight Controller Configuration: Logback Examples .. 118
Opendaylight Controller: Configuration Logback.xml ... 125
Configuration example of thread pools using yangcli-pro ... 126
Configuration example of thread pools using telnet .. 126

OpenDaylight Developer Guide March 4, 2015 master

41

Connecting to plaintext TCP socket ... 126
Configuring threadfactory ... 127
Configuring fixed threadpool .. 130
OpenDaylight Controller MD-SAL: Model reference .. 131

OpenDaylight Controller: MD-SAL Developers'
Guide

Model-Driven SAL (MD-SAL) is a set of infrastructure services aimed at providing common
and generic support to application and plugin developers.

MD-SAL currently provides infrastructure services for the following:

• Data Services

• RPC or Service routing

• Notification subscription and publish services

This model-driven infrastructure allows developers to develop applications and plugins
against an API type of their choice (Java generated APIs, DOM APIs, REST APIs). The
infrastructure automatically provides the other API types. The modelling language of
choice for MD-SAL is YANG, which is an IETF standard, for modelling network element
configuration. The YANGTools project and its development tools provide support for
YANG.

API types
MD-SAL provides three API types:

• Java generated APIs for consumers and producers

• DOM APIs: Mostly used by infrastucture components and usuful for XML-driven plugin
and application types

• REST APIs: Restconf that is available to consumer type applications and provides access to
RPC and data stores

Basic YANG concepts and their rendition in APIs
The following are the basic concepts in YANG modeling:

• Remote Procedure (RPCs): In MD-SAL, RPCs are used for any call or invocation that
crosses the plugin or module boundaries. RPCs are triggered by consumers, and usually
have return values.

• Notifications: Asynchronous events, published by components for listeners.

• Configuration and Operational Data tree: The well-defined (by model) tree structure that
represents the operational state of components and systems.

• Instance Identifier: The path that uniquely identifies the sub-tree in the configuration
or operational space. Most of the addressing of data is done by Instance Identifier.

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf

OpenDaylight Developer Guide March 4, 2015 master

42

RPC
In YANG, Remote Procedure Calls (RPCs) are used to model any procedure call
implemented by a Provider (Server), which exposes functionality to Consumers (Clients).

In MD-SAL terminology, the term RPC is used to define the input and output for a
procedure (function) that is to be provided by a Provider, and adapted by the MD-SAL.

In the context of the MD-SAL, there are three types of RPCs (RPC services):

• Global: One service instance (implementation) per controller container or mount point

• Routed: Multiple service instances (implementations) per controller container or mount
point

Global service
• There is only one instance of a Global Service per controller instance. (Note that a

controller instance can consist of a cluster of controller nodes.)

Routing

• Binding-Aware MD-SAL (sal-binding)

• Rpc Type: Identified by a generated RpcService class and a name of a method invoked
on that interface

• Binding-Independent MD-SAL (sal-dom)

• Rpc Type: Identified by a QName

Routed service
• There can be multiple instances (implementations) of a service per controller instance

• Can be used for southbound plugins or for horizontal scaling (load-balancing) of
northbound plugins (services)

Routing

Routing is done based on the contents of a message, for example, Node Reference. The
field in a message that is used for routing is specified in a YANG model by using the
routing-reference statement from the yang-ext model.

• Binding Aware MD-SAL (sal-binding)

• RPC Type: Identified by an RpcService subclass and the name of the method invoked on
that interface

• Instance Identifier: In a data tree, identifies the element instance that will be used as the
route target. The used class is:

org.opendaylight.yang.binding.InstanceIdentifier

The Instance Identifier is learned from the message payload and from the model.

OpenDaylight Developer Guide March 4, 2015 master

43

• Binding Independent MD-SAL (sal-dom)

• RPC Type: Identified by a QName

• Instance Identifier: In a data tree, identifies the element instance that will be used as the
route target. The used class is:

org.opendaylight.yang.data.api.InstanceIdentifier

RPCs in various API types:

• Java Generated APIs: For each model there is *Service interface. See YANG Tools: Yang
to Java mapping-RPC to understand how YANG statements maps to Service interface.

• Providers expose their implementation of *Service by registering their implementation
to RpcProviderRegistry.

• Consumers get the *Service implementation from RpcConsumerRegistry. If the
implementer uses a different API type, MD-SAL automatically translates data in the
background.

• DOM APIs: RPCs are identified by QName.

• Providers expose their implementation of RPC identified by QName registering their
RpcImplementation to RpcProvisionRegistry.

• Consumers get the *Service implementation from RpcConsumerRegistry. If the
implementer uses different API type, MD-SAL automatically translates data in the
background.

• REST APIs: RPCs are identified by the model name and their name.

• Consumers invoke RPCs by invoking POST operation to /restconf/operations/model-
name:rpc-name.

Notification
In YANG, Notifications represent asynchronous events, published by providers for listeners.

RPCs in various API types:

• Java Generated APIs: For each model, there is *Listener interface and transfer object for
each notification. See YANG Tools: Yang to Java mapping-Notification to understand
how YANG statements map to the Notifications interface.

• Providers publish notifications by invoking the publish method on
NotificationPublishService.

• To receive notifications, consumers register their implementation of *Listener to
NotificationBrokerService. If the notification publisher uses a different API type, MD-
SAL automatically translates data in the background.

• DOM APIs: Notifications are represented only by XML Payload.

• Providers publish notifications by invoking the publish method on
NotificationPublishService.

https://wiki.opendaylight.org/view/YANG_Tools:YANG_to_Java_Mapping#Rpc
https://wiki.opendaylight.org/view/YANG_Tools:YANG_to_Java_Mapping#Rpc
https://wiki.opendaylight.org/view/YANG_Tools:YANG_to_Java_Mapping#Notification

OpenDaylight Developer Guide March 4, 2015 master

44

• To receive notifications, consumers register their implementation of *Listener to
NotificationBrokerService. If the notification publisher uses a different API type, MD-
SAL automatically translates data in the background.

• REST APIs: Notifications are currently not supported.

Instance Identifier
The Instance Identifier is the unique identifier of an element (location) in the yang data
tree: basically, it is the path to the node that uniquely identifies all the parent nodes of the
node. The unique identification of list elements requires the specification of key values as
well.

MD-SAL currently provides three different APIs to access data in the common data store:

• Binding APIs (Java generated DTOs)

• DOM APIs

• OpenDaylight Controller:MD-SAL Restconf APIs

Example

Consider the following simple YANG model for inventory:

module inventory {
 namespace "urn:opendaylight:inventory";
 prefix inv;
 revision "2013-06-07";
 container nodes {
 list node {
 key "id";
 leaf "id" {
 type "string";
 }
 }
 }
}

An example having one instance of node with the name foo

Let us assume that we want to create an instance identifier for the node foo in the
following bindings or formats:

• YANG / XML / XPath version

/inv:nodes/inv:node[id="foo"]

• Binding-Aware version (generated APIs)

import org.opendaylight.yang.gen.urn.opendaylight.inventory.rev130607.Nodes;
import org.opendaylight.yang.gen.urn.opendaylight.inventory.rev130607.nodes.
Node;
import org.opendaylight.yang.gen.urn.opendaylight.inventory.rev130607.nodes.
NodeKey;

import org.opendaylight.yangtools.yang.binding.InstanceIdentifier;

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf

OpenDaylight Developer Guide March 4, 2015 master

45

InstanceIdentifier<Node> identifier = InstanceIdentifier.builder(Nodes.class).
child(Node.class,new NodeKey("foo")).toInstance();

Note

The last call, toInstance() does not return an instance of the node, but the Java
version of Instance identifier which uniquely identifies the node foo.

• HTTP Restconf APIs

http://localhost:8080/restconf/config/inventory:nodes/node/foo

Note

We assume that HTTP APIs are exposed on localhost, port 8080.

• Binding Independent version (yang-data-api)

import org.opendaylight.yang.common.QName;
import org.opendaylight.yang.data.api.InstanceIdentifier;

QName nodes = QName.create("urn:opendaylight:inventory","2013-06-07","nodes");
QName node = QName.create(nodes,"nodes");
QName idName = QName.create(nodes,"id");
InstanceIdentifier = InstanceIdentifier.builder()
 .node(nodes)
 .nodeWithKey(node,idName,"foo")
 .toInstance();

Note

The last call, toInstance() does not return an instance of node, but the Java
version of Instance identifier which uniquely identifies the node foo.

MD-SAL: Plugin types
MD-SAL has four component-types that differ in complexity, expose different models, and
use different subsets of the MD-SAL functionality.

• Southbound Protocol Plugin: Responsible for handling multiple sessions to the
southbound network devices and providing common abstracted interface to access
various type of functionality provided by these network devices

• Manager-type application: Responsible for managing the state and the configuration of
a particular functionality which is exposed by southbound protocol plugins

• Protocol Library: Responsible for handling serialization or de-serialization between the
wire protocol format and the Java form of the protocol

• Connector Plugin: Responsible for connecting consumers (and providers) to Model-driven
SAL (and other components) by means of different wire protocol or set of APIs

Southbound protocol plugin
The responsibilities of the Southbound Protocol plugin include the following :

OpenDaylight Developer Guide March 4, 2015 master

46

• Handling multiple sessions to southbound network devices

• Providing a common abstracted interface to access various type of functionality provided
by the network devices

The Southbound Protocol Plugin should be stateless. The only preserved state (which is
still transient) is the list of connected devices or sessions. Models mostly use RPCs and
Notifications to describe plugin functionality Example plugins: Openflow Southbound
Plugin, Netconf Southbound Plugin, BGP Southbound Plugin, and PCEP Southbound Plugin.

Manager-type application
The responsibilities of the Manager-type applications include the following:

• Providing configuration-like functionality to set or modify the behaviour of network
elements or southbound plugins

• Coordinating flows and provide higher logic on top of stateless southbound plugins

Manager-type Applications preserve state. Models mostly use Configuration Data and
Runtime Data to describe component functionality.

Protocol library
The OpenFlow Protocol Library is a component in OpenDaylight, that mediates
communication between the OpenDaylight controller and the hardware devices supporting
the OpenFlow protocol. The primary goal of the library is to provide user (or upper layers of
OpenDaylight) communication channel, that can be used for managing network hardware
devices.

MD-SAL: Southbound plugin development guide
The southbound controller plugin is a functional component.

The plugin:

• Provides an abstraction of network devices functionality

• Normalizes their APIs to common contracts

• Handles session and connections to them

The plugin development process generally moves through the following phases:

1. Definition of YANG models (API contracts): For Model-Driven SAL, the API contracts
are defined by YANG models and the Java interfaces generated for these models. A
developers opts for one of the following:

• Selects from existing models

• Creates new models

• Augments (extends) existing models

OpenDaylight Developer Guide March 4, 2015 master

47

2. Code Generation: The Java Interfaces, implementation of Transfer Objects, and mapping
to Binding-Independent form is generated for the plugin. This phase requires the proper
configuration of the Maven build and YANG Maven Tools.

3. Implementation of plugin: The actual implementation of the plugin functionality and
plugin components.

Note

The order of steps is not definitive, and it is up to the developer to find the
most suitable workflow. For additional information, see the section called “Best
practices” [49].

Definition of YANG models
In this phase, the developer selects from existing models (provided by controller or other
plugins), writes new models, or augments existing ones. A partial list of available models
could be found at: YANG Tools:Available Models.

The mapping of YANG to Java is documented at: Yang Tools:YANG to Java Mapping. This
mapping provides an overview of how YANG is mapped to Java.

Multiple approaches to model the functionality of the southbound plugin are available:

• Using RPCs and Notifications

• Using Configuration Data Description

• Using Runtime Data Description

• Combining approaches

RPCs
RPCs can model the functionality invoked by consumers (applications) that use the
southbound plugin. Although RPCs can model any functionality, they are usually used
to model functionality that cannot be abstracted as configuration data, for example,
PacketOut, or initiating a new session to a device (controller-to-device session).

RPCs are modeled with an RPC statement in the following form: rpc foo {} This
statement is mapped to method.

RPC input To define RPC input, use an input statement inside RPC. The structure of the
input is defined with the same statements as the structure of notifications, configuration,
and so on.

 rpc foo {
 input {
 ...
 }
 }

RPC output To define the RPC output (structure of result), use the RPC output statement.

https://wiki.opendaylight.org/view/YANG_Tools:Available_Models
https://wiki.opendaylight.org/view/Yang_Tools:YANG_to_Java_Mapping

OpenDaylight Developer Guide March 4, 2015 master

48

 rpc foo {
 output {
 ...
 }
 }

Notifications Use notifications to model events originating in a network device or
southbound plugin which is exposed to consumers to listen.

A notification statement defines a notification:

 notification foo {
 ...
 }

Configuration data

Configuration data is good for the following purposes:

• Model or provide CRUD access to the state of protocol plugin and/or network devices

• Model any functionality which could be exposed as a configuration to the consumers or
applications

Configuration data in YANG is defined by using the config substatement with a true
argument. For example:

 container foo {
 config true;
 ...
 }

Runtime (read-only) data Runtime (read-only) data is good to model or provide read
access to the state of the protocol plugin and networtk devices, or network devices. This
type of data is good to model statistics or any state data, which cannot be modified by the
consumers (applications), but needs exposure (for example, learned topology, or list of
connected switches).

Runtime data in YANG is defined by using config subsatement with a false argument:

 container foo {
 config false;
 }

Structural elements The structure of RPCs, notifications, configuration data, and runtime
data is modelled using structural elements (data schema nodes). Structural elements define
the actual structure of XML, DataDOM documents, and Java APIs for accessing or storing
these elements. The most commonly used structural elements are:

• Container

• List

• Leaf

• Leaf-list

• Choice

OpenDaylight Developer Guide March 4, 2015 master

49

Augmentations
Augmentations are used to extend existing models by providing additional structural
elements and semantics. Augmentation cannot change the mandatory status of nodes in
the original model, or introduce any new mandatory statements.

Best practices
• YANG models must be located under the src/main/yang folder in your project.

• Design your models so that they are reusable and extendible by third-parties.

• Always try to reuse existing models and types provided by these models. See YANG
Tools:Available Models or others if there is no model which provides you with data
structures and types you need.

Code generation To configure your project for code generation, your build system needs
to use Maven. For the configuration of java API generation, see Yang Tools:Maven Plugin
Guide.

Artefacts generated at compile time The following artefacts are generated at compile
time:

• Service interfaces

• Transfer object interfaces

• Builders for transfer objects and immutable versions of transfer objects

Implementation
This step uses generated artefacts to implement the intended functionality of the
southbound plugin.

Provider implementation To expose functionality through binding-awareness, the MD-
SAL plugin needs to be compiled against these APIs, and must at least implement the
BindingAwareProvider interface. The provider uses APIs which are available in the SAL-
binding-api Maven artifact. To use this dependency, insert the following dependency into
your pom.xml:

<dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>sal-binding-api</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>

BindingAwareProvider implementation A BindingAwareProvider interface requires the
implementation of four methods, and registering an instance with BindingAwareBroker.
Use AbstractBindingAwareProvider to simplify the implementation.

• void onSessionInitialized(ConsumerContext ctx): This callback is called when Binding-
Aware Provider is initialized and ConsumerContext is injected into it. ConsumerContext
serves to access all functionality which the plugin is to consume from other controller
components.

https://wiki.opendaylight.org/view/YANG_Tools:Available_Models
https://wiki.opendaylight.org/view/YANG_Tools:Available_Models
https://wiki.opendaylight.org/view/Yang_Tools:Maven_Plugin_Guide
https://wiki.opendaylight.org/view/Yang_Tools:Maven_Plugin_Guide

OpenDaylight Developer Guide March 4, 2015 master

50

• void onSessionInitialized(ProviderContext ctx): This callback is called when Binding-Aware
Provider is initialized and ProviderContext is injected into it. ProviderContext serves to
access all functionality which the plugin could use to provide its functionality to controller
components.

• Collection<? extends RpcService> getImplementations(): Shorthand registration of an
already instantiated implementations of global RPC services. Automated registration is
currently not supported.

• public Collection<? extends ProviderFunctionality> getFunctionality(): Shorthand
registration of an already instantiated implementations of ProviderFunctionality.
Automated registration is currently not supported. NOTE: You also need to set your
implementation of AbstractBindingAwareProvider set as Bundle Activator for MD-SAL to
properly load it.

Notifications
To publish events, request an instance of NotificationProviderService from ProviderContext.
Use the following:

 ExampleNotification notification = (new ExampleNotificationBuilder()).
build();
 NotificationProviderService notificationProvider = providerContext.
getSALService(NotificationProviderService.class);
 notificationProvider.notify(notification);

RPC implementations To implement the functionality exposed as RPCs, implement the
generated RpcService interface. Register the implementation within ProviderContext
included in the provider.

If the generated RpcInterface is FooService, and the implementation is FooServiceImpl:

 @Override
 public void onSessionInitiated(ProviderContext context) {
 context.addRpcImplementation(FooService.class, new FooServiceImpl());
 }

Best practices
RPC Service interface contract requires you to return Future object (to make it obvious that
call may be asynchronous), but it is not specified how this Future is implemented. Consider
using existing implementations provided by JDK or Google Guava. Implement your own
Future only if necessary.

Consider using SettableFuture if you intend not to use FutureTask or submit Callables to
ExecutorService.

Important

Do not implement transfer object interfaces unless necessary. Choose already
generated builders and immutable versions. If you want to implement transfer
objects, ensure that instances exposed outside the plugin are immutable.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
http://docs.guava-libraries.googlecode.com/git-history/release/javadoc/com/google/common/util/concurrent/SettableFuture.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/FutureTask.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

OpenDaylight Developer Guide March 4, 2015 master

51

OpenDaylight Controller: MD-SAL FAQs
Q-1: What is the overall MD-SAL architecture?

• What is the overall architecture, components, and functionality?

• Who supplies which components, and how are the components plumbed?

A-1: The overall Model-Driven SAL (MD-SAL) architecture did not really change from the
API-Driven SAL (AD-SAL). As with the AD-SAL, plugins can be data providers, or data
consumers, or both (although the AD-SAL did not explicitly name them as such). Just like
the AD-SAL, the MD-SAL connects data consumers to appropriate data providers and
(optionally) facilitates data adaptation between them.

Now, in the AD-SAL, the SAL APIs request routing between consumers and providers, and
data adaptations are all statically defined at compile or build time. In the MD-SAL, the SAL
APIs and request routing between consumers and providers are defined from models, and
data adaptations are provided by internal adaptation plugins. The API code is generated
from models when a plugin is compiled. When the plugin OSGI bundle is loaded into the
controller, the API code is loaded into the controller along with the rest of the plugin
containing the model.

Figure 5.1. AD-SAL and MD-SAL

The AD-SAL provides request routing (selects an SB plugin based on service type) and
optionally provides service adaptation, if an NB (Service, abstract) API is different from
its corresponding SB (protocol) API. For example, in the above figure, the AD-SAL routes
requests from NB-Plugin 1 to SB Plugins 1 and 2. Note that the plugin SB and NB APIs in
this example are essentially the same (although both of them need to be defined). Request
routing is based on plugin type: the SAL knows which node instance is served by which
plugin. When an NB Plugin requests an operation on a given node, the request is routed to
the appropriate plugin which then routes the request to the appropriate node. The AD-SAL
can also provide service abstractions and adaptations. For example, in the above figure, NB
Plugin 2 is using an abstract API to access the services provided by SB Plugins 1 and 2. The
translation between the SB Plugin API and the abstract NB API is done in the Abstraction
module in the AD-SAL.

OpenDaylight Developer Guide March 4, 2015 master

52

The MD-SAL provides request routing and the infrastructure to support service adaptation.
However, it does not provide service adaptation itself: service adaptation is provided by
plugins. From the point of view of MD-SAL, the Adaptation Plugin is a regular plugin. It
provides data to the SAL, and consumes data from the SAL through APIs generated from
models. An Adaptation Plugin basically performs model-to-model translations between two
APIs. Request Routing in the MD-SAL is done on both protocol type and node instances,
since node instance data is exported from the plugin into the SAL (the model data contains
routing information).

The simplest MD-SAL APIs generated from models (RPCs and Notifications, both supported
in the yang modeling language) are functionally equivalent to AD-SAL function call APIs.
Additionally, the MD-SAL can store data for models defined by plugins. Provider and
consumer plugins can exchange data through the MD-SAL storage. Data in the MD-SAL
is accessed through getter and setter APIs generated from models. Note that this is in
contrast to the AD-SAL, which is stateless.

Note that in the above figure, both NB AD-SAL Plugins provide REST APIs to controller
client applications.

The functionality provided by the MD-SAL is basically to facilitate the plumbing between
providers and consumers. A provider or a consumer can register itself with the MD-SAL. A
consumer can find a provider that it is interested in. A provider can generate notifications;
a consumer can receive notifications and issue RPCs to get data from providers. A provider
can insert data into SAL storage; a consumer can read data from SAL storage.

Note that the structure of SAL APIs is different in the MD-SAL from that in the AD-SAL. The
AD-SAL typically has both NB and SB APIs even for functions or services that are mapped
1:1 between SB Plugins and NB Plugins. For example, in the current AD-SAL implementation
of the OpenFlow Plugin and applications, the NB SAL APIs used by OF applications are
mapped 1:1 onto SB OF Plugin APIs. The MD-SAL allows both the NB plugins and SB
plugins to use the same API generated from a model. One plugin becomes an API (service)
provider; the other becomes an API (service) Consumer. This eliminates the need to define
two different APIs and to provide three different implementations even for cases where
APIs are mapped to each other 1:1. The MD SAL provides instance-based request routing
between multiple provider plugins.

Q-2: What functionality does the MD-SAL assume? For example, does the SAL assume
that the network model is a part of the SAL?

A-2: The MD-SAL does not assume any model. All models are provided by plugins. The MD-
SAL only provides the infrastructure and the plumbing for the plugins.

Q-3: What is the "day in the life" of an MD-SAL plugin?

A-3: All plugins (protocol, application, adaptation, and others) have the same lifecycle. The
life of a plugin has two distinct phases: design and operation. During the design phase, the
plugin designer performs the following actions:

• The designer decides which data will be consumed by the plugin, and imports the SAL
APIs generated from the API provider’s models. Note that the topology model is just one
possible data type that may be consumed by a plugin. The list of currently available data
models and their APIs can be found in YANG_Tools:Available_Models.

OpenDaylight Developer Guide March 4, 2015 master

53

• The designer decides which data and how it will be provided by the plugin, and designs
the data model for the provided data. The data model (expressed in yang) is then run
through the YANG Tools, which generate the SAL APIs for the model.

• The implementations for the generated consumer and provider APIs, along with other
plugin features and functionality, are developed. The resulting code is packaged in a
“plugin” OSGI bundle. Note that a developer may package the code of a subsystem in
multiple plugins or applications that may communicate with each other through the SAL.

• The generated APIs and a set of helper classes are also built and packaged in an “API”
OSGI bundle.

The plugin development process is shown in the following figure.

Figure 5.2. Plugin development process

When the OSGI bundle of a plugin is loaded into the controller and activated, the
operation phase begins. The plugin operation is probably best explained with a few
examples describing the operation of the OF Protocol plugin and OF applications, such as
the Flow Programmer Service, the ARP Handler, or the Topology Manager. The following
figure shows a scenario where a “Flow Deleted” notification from a switch arrives at the
controller.

https://wiki.opendaylight.org/view/YANG_Tools:Available_Models

OpenDaylight Developer Guide March 4, 2015 master

54

Figure 5.3. Flow deleted at controller

The scenario is as follows:

1. The Flow Programmer Service registers with the MD SAL for the ‘Flow Deleted’
notification. This is done when the Controller and its plugins or applications are started.

2. A ‘Flow Deleted’ OF packet arrives at the controller. The OF Library receives the packet
on the TCP/TLS connection to the sending switch, and passes it to the OF Plugin.

3. The OF Plugin parses the packet, and uses the parsed data to create a ‘Flow Deleted’
SAL notification. The notification is actually an immutable ‘Flow Deleted’ Data Transfer
Object (DTO) that is created or populated by means of methods from the model-
generated OF Plugin API.

4. The OF Plugin sends the ‘Flow Deleted’ SAL notification (containing the notification
DTO) into the SAL. The SAL routes the notification to registered consumers, in this case,
the Flow Programmer Service.

5. The Flow Programmer Service receives the notification containing the notification DTO.

6. The Flow Programmer Service uses methods from the API of the model-generated
OF Plugin to get data from the immutable notification DTO received in Step 5. The
processing is the same as in the AD-SAL.

Note that other packet-in scenarios, where a switch punts a packet to the controller, such
as an ARP or an LLDP packet, are similar. Interested applications register for the respective
notifications. The OF plugin generates the notification from received OF packets, and
sends them to the SAL. The SAL routes the notifications to the registered recipients. The
following figure shows a scenario where an external application adds a flow by means of
the NB REST API of the controller.

OpenDaylight Developer Guide March 4, 2015 master

55

Figure 5.4. External app adds flow

The scenario is as follows:

1. Registrations are performed when the Controller and its plugins or applications are
started.

a. The Flow Programmer Service registers with the MD SAL for Flow configuration data
notifications.

b. The OF Plugin registers (among others) the ‘AddFlow’ RPC implementation with the
SAL. Note that the RPC is defined in the OF Plugin model, and the API is generated
during build time.

2. A client application requests a flow add through the REST API of the Controller. (Note
that in the AD-SAL, there is a dedicated NB REST API on top of the Flow Programming
Service. The MD-SAL provides a common infrastructure where data and functions
defined in models can be accessed by means of a common REST API. For more
information, see http://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/). The
client application provides all parameters for the flow in the REST call.

3. Data from the ‘Add Flow’ request is deserialized, and a new flow is created in the
Flow Service configuration data tree. (Note that in this example the configuration and
operational data trees are separated; this may be different for other services). Note also
that the REST call returns success to the caller as soon as the flow data is written to the
configuration data tree.

4. Since the Flow Programmer Service is registered to receive notifications for data changes
in the Flow Service data tree, the MD-SAL generates a ‘data changed’ notification to the
Flow Programmer Service.

5. The Flow Programmer Service reads the newly added flow, and performs a flow add
operation (which is basically the same as in the AD-SAL).

6. At some point during the flow addition operation, the Flow Programmer Service needs
to tell the OF Plugin to add the flow in the appropriate switch. The Flow Programmer

http://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/

OpenDaylight Developer Guide March 4, 2015 master

56

Service uses the OF Plugin generated API to create the RPC input parameter DTO for the
“AddFlow” RPC of the OF Plugin.

7. The Flow Programmer Service gets the service instance (actually, a proxy), and invokes
the “AddFlow” RPC on the service. The MD-SAL will route the request to the appropriate
OF Plugin (which implements the requested RPC).

8. The ‘AddFlow’ RPC request is routed to the OF Plugin, and the implementation method
of the “AddFlow” RPC is invoked.

9. The ‘AddFlow’ RPC implementation uses the OF Plugin API to read values from the DTO
of the RPC input parameter. (Note that the implementation will use the getter methods
of the DTO generated from the yang model of the RPC to read the values from the
received DTO.)

10.The ‘AddFlow’ RPC is further processed (pretty much the same as in the AD-SAL) and at
some point, the corresponding flowmod is sent to the corresponding switch.

Q-4: Is there a document that describes how code is generated from the models for the
MD-SAL?

A-4: Yangtools documents the Yang to Java generation, including examples of how
the yang constructs are mapped into Java classes. You can write unit tests against the
generated code. You will have to write implementations of the generated RPC interfaces.
The generated code is just Java, and it debugs just like Java.

If you want to play with generating Java from Yang there is a maven archetype to help
you get going: Maven Archetypes: ODL Model Project. Or, you can try creating a project in
Eclipse as explained at: YANG to Java conversion: How to create Maven project in Eclipse.

Q-5: The code generation tools mention producers and consumers'. How are these
related to southbound and 'northbound SAL plugins?

A-5: The difference between southbound and northbound plugins is that the southbound
plugins talk protocols to network nodes, and northbound plugins talk application APIs to
the controller applications. As far as the SAL is concerned, there is really no north or south.
The SAL is basically a data exchange and adaptation mechanism between plugins. The
plugin SAL roles (consumer or producer) are defined with respect to the data being moved
around or stored by the SAL. A producer implements an API, and provides the data of the
API: a consumer uses the API, and consumes the data of the API. While northbound and
southbound provide a network engineer’s view of the SAL, consumer and producer provide
a software engineer’s view of the SAL, and is shown in the following figure:

https://wiki.opendaylight.org/view/YANG_Tools:YANG_to_Java_Mapping
https://wiki.opendaylight.org/view/Maven_Archetypes:odl-model-project
http://sdntutorials.com/yang-to-java-conversion-how-to-create-maven-project-in-eclipse/

OpenDaylight Developer Guide March 4, 2015 master

57

Figure 5.5. SAL consumer and producer view

Q-6: Where can I find models that have already been defined in OpenDaylight?

A-6: The list of models that have been defined for the SAL and in various plugins can be
found in MD-SAL Model Reference.

Q-7: How do I migrate my existing plugins and services to MD-SAL?

A-7: The migration guide can be found in the MD-SAL Application Migration Guide.

Q-8: Where can I find SAL example code?

A-8: The toaster sample provides a simple yet complete example of a model, a service
provider (toaster), and a service consumer. It provides the model of a programmable
toaster, a sample consumer application that uses MD-SAL APIs; a sample southbound
plugin (a service provider) that implements toaster; and a unit test suite.

The toaster example is in controller.git under opendaylight/md-sal/samples.

Q-9: Where is the REST API code for the example?

A-9: The REST APIs are derived from models. You do not have to write any code for it. The
controller will implement the RESTCONF protocol which defines access to yang-formatted
data through REST. Basically, all you need to do is define your service in a model, and
expose that model to the SAL. REST access to your modeled data will then be provided by
the SAL infrastructure. However, if you want to, you can create your own REST API (for
example, to be compliant with an existing API).

Q-10: How can one use RESTCONF to access the MD-SAL datastore?

A-10: For information on accessing the MD-SAL datastore, see MD-SAL Restconf.

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Model_Reference
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Application_Migration_Guide
http://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf

OpenDaylight Developer Guide March 4, 2015 master

58

OpenDaylight Controller Configuration: Java Code
Generator

YANG to Java code generator

The Java code for the configuration system is generated by the yang-maven-plugin and
the yang-jmx-generator-plugin. The input Yang module files are converted to java files by
the definition of the module and the specified templates. the generated java code can
represent interfaces, classes, or abstract classes used for configuration.

Service interfaces generating
Service interfaces (SI) are generated from YANG "service-types". Each SI must be defined
as "identity" with a "base" statement set to "config:service-type", or another SI. This is
because a service must have a globally unique name. Each SI must be annotated with
@ServiceInterfaceAnnotation, and must extend AbstractServiceInterface.

Sample YANG module representing service interface

module config-test {
 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:controller:test";
 prefix "test";

 import config { prefix config; revision-date 2013-04-05; }

 description
 "Testing API";

 revision "2013-06-13" {
 description
 "Initial revision";
 }

 identity testing {
 description
 "Test api";

 base "config:service-type";
 config:java-class "java.lang.AutoCloseable";
 }
}

The "description" node of identity is generated as javadoc in the service interface. The
"config:java-class" is generated as ServiceInterfaceAnnotation. It specifies java classes or
interfaces in the "osgiRegistrationTypes" parameter. The module implementing this service
interface must instantiate a java object that can be cast to any of the java types defined in
"osgiRegistrationTypes".

Generated java source file: AutoCloseableServiceInterface

package %prefix%.test;

OpenDaylight Developer Guide March 4, 2015 master

59

/**
* Test api
*/
@org.opendaylight.controller.config.api.annotations.Description(value = "Test
 api")
@org.opendaylight.controller.config.api.annotations.
ServiceInterfaceAnnotation(value = "testing", osgiRegistrationType = java.
lang.AutoCloseable.class)
public interface AutoCloseableServiceInterface extends org.opendaylight.
controller.config.api.annotations.AbstractServiceInterface
{

}

Module stubs generating

Modules are constructed during configuration transaction. A module implements the
ModuleMXBean interface. The ModuleMXBean interface represents getters and setters for
attributes that will be exposed to the configuration registry by means of JMX. Attributes
can either be simple types, or composite types.

Each ModuleMXBean must be defined in yang as "identity" with the base statement set to
"config:module-type". Not only are ModuleMXBeans generated, but also ModuleFactory
and Module stubs. Both are first generated as abstract classes with almost full functionality.
Then their implementations, which are allowed to be modified by users, are generated, but
only once.

Runtime beans generating
Runtime JMX beans are purposed to be the auditors: they capture data about running
module instances. A module can have zero or more runtime beans. Runtime beans
are hierarchically ordered, and each must be uniquely identified. A runtime bean is
defined as a configuration augment of a module, from which interface RuntimeMXBean,
RuntimeRegistrator, and RuntimeRegistretion are generated. Augment definition contains
arguments representing the data of a module that must be watched.

RPCs

Method calls in yang must be specified as top level elements. The context, where an RPC
operation exits, must be defined in the RPC definition itself, and in the runtime bean that
provides method implementation.

OpenDaylight Controller MD-SAL: Restconf

Restconf operations overview

Restconf allows access to datastores in the controller. There are two datastores:

• Config: Contains data inserted via controller

• Operational: Contains other data

OpenDaylight Developer Guide March 4, 2015 master

60

Note

Each request must start with the URI /restconf. Restconf listens on port 8080
for HTTP requests.

Restconf supports OPTIONS, GET, PUT, POST, and DELETE operations. Request and
response data can either be in the XML or JSON format. XML structures according to
yang are defined at: XML-YANG. JSON structures are defined at: JSON-YANG. Data in the
request must have a correctly set Content-Type field in the http header with the allowed
value of the media type. The media type of the requested data has to be set in the Accept
field. Get the media types for each resource by calling the OPTIONS operation. Most of the
paths of the pathsRestconf endpoints use Instance Identifier. <identifier> is used in the
explanation of the operations.

<identifier>

• It must start with <moduleName>:<nodeName> where <moduleName> is a name of
the module and <nodeName> is the name of a node in the module. It is sufficient to
just use <nodeName> after <moduleName>:<nodeName>. Each <nodeName> has to be
separated by /.

• <nodeName> can represent a data node which is a list or container yang built-in type. If
the data node is a list, there must be defined keys of the list behind the data node name
for example, <nodeName>/<valueOfKey1>/<valueOfKey2>.

• The format <moduleName>:<nodeName> has to be used in this case as well: Module A
has node A1. Module B augments node A1 by adding node X. Module C augments node
A1 by adding node X. For clarity, it has to be known which node is X (for example: C:X).
For more details about encoding, see: Restconf 02 - Encoding YANG Instance Identifiers
in the Request URI.

Mount point
A Node can be behind a mount point. In this case, the URI has to be in format
<identifier>/yang-ext:mount/<identifier>. The first <identifier> is the path to a
mount point and the second <identifier> is the path to a node behind the mount
point. A URI can end in a mount point itself by using <identifier>/yang-ext:mount.
More information on how to actually use mountpoints is available at: OpenDaylight
Controller:Config:Examples:Netconf.

HTTP methods

OPTIONS /restconf

• Returns the XML description of the resources with the required request and response
media types in Web Application Description Language (WADL)

GET /restconf/config/<identifier>

• Returns a data node from the Config datastore.

• <identifier> points to a data node which must be retrieved.

http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/draft-lhotka-netmod-yang-json-02
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Concepts#Instance_Identifier
http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1
http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf

OpenDaylight Developer Guide March 4, 2015 master

61

GET /restconf/operational/<identifier>

• Returns the value of the data node from the Operational datastore.

• <identifier> points to a data node which must be retrieved.

PUT /restconf/config/<identifier>

• Updates or creates data in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be stored.

Example:

PUT http://<controllerIP>:8080/restconf/config/module1:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

Example with mount point:

PUT http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-
ext:mount/module2:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

POST /restconf/config

• Creates the data if it does not exist

For example:

POST URL: http://localhost:8080/restconf/config/
content-type: application/yang.data+json
JSON payload:

 {
 "toaster:toaster" :
 {
 "toaster:toasterManufacturer" : "General Electric",
 "toaster:toasterModelNumber" : "123",
 "toaster:toasterStatus" : "up"
 }
 }

POST /restconf/config/<identifier>

• Creates the data if it does not exist in the Config datastore, and returns the state about
success.

• <identifier> points to a data node where data must be stored.

• The root element of data must have the namespace (data are in XML) or module name
(data are in JSON.)

OpenDaylight Developer Guide March 4, 2015 master

62

Example:

POST http://<controllerIP>:8080/restconf/config/module1:foo
Content-Type: applicaton/xml/
<bar xmlns=“module1namespace”>
 …
</bar>

Example with mount point:

http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/
module2:foo
Content-Type: applicaton/xml
<bar xmlns=“module2namespace”>
 …
</bar>

POST /restconf/operations/<moduleName>:<rpcName>

• Invokes RPC.

• <moduleName>:<rpcName> - <moduleName> is the name of the module and <rpcName>
is the name of the RPC in this module.

• The Root element of the data sent to RPC must have the name “input”.

• The result can be the status code or the retrieved data having the root element “output”.

Example:

POST http://<controllerIP>:8080/restconf/operations/module1:fooRpc
Content-Type: applicaton/xml
Accept: applicaton/xml
<input>
 …
</input>

The answer from the server could be:
<output>
 …
</output>

An example using a JSON payload:

POST http://localhost:8080/restconf/operations/toaster:make-toast
Content-Type: application/yang.data+json
{
 "input" :
 {
 "toaster:toasterDoneness" : "10",
 "toaster:toasterToastType":"wheat-bread"
 }
}

Note

Even though this is a default for the toasterToastType value in the yang, you
still need to define it.

OpenDaylight Developer Guide March 4, 2015 master

63

DELETE /restconf/config/<identifier>

• Removes the data node in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be removed.

More information is available in the Restconf RFC.

How Restconf works
Restconf uses these base classes:

InstanceIdentifier Represents the path in the data tree

ConsumerSession Used for invoking RPCs

DataBrokerService Offers manipulation with transactions and reading data from
the datastores

SchemaContext Holds information about yang modules

MountService Returns MountInstance based on the InstanceIdentifier pointing
to a mount point

MountInstace Contains the SchemaContext behind the mount point

DataSchemaNode Provides information about the schema node

SimpleNode Possesses the same name as the schema node, and contains the
value representing the data node value

CompositeNode Can contain CompositeNode-s and SimpleNode-s

GET in action
Figure 1 shows the GET operation with URI restconf/config/M:N where M is the module
name, and N is the node name.

Figure 5.6. Get

1. The requested URI is translated into the InstanceIdentifier which points to the data
node. During this translation, the DataSchemaNode that conforms to the data node is
obtained. If the data node is behind the mount point, the MountInstance is obtained as
well.

http://tools.ietf.org/html/draft-bierman-netconf-restconf-02

OpenDaylight Developer Guide March 4, 2015 master

64

2. Restconf asks for the value of the data node from DataBrokerService based on
InstanceIdentifier.

3. DataBrokerService returns CompositeNode as data.

4. StructuredDataToXmlProvider or StructuredDataToJsonProvider is called based on the
Accept field from the http request. These two providers can transform CompositeNode
regarding DataSchemaNode to an XML or JSON document.

5. XML or JSON is returned as the answer on the request from the client.

PUT in action
Figure 2 shows the PUT operation with the URI restconf/config/M:N where M is the
module name, and N is the node name. Data is sent in the request either in the XML or
JSON format.

Figure 5.7. Put

1. Input data is sent to JsonToCompositeNodeProvider or XmlToCompositeNodeProvider.
The correct provider is selected based on the Content-Type field from the http request.
These two providers can transform input data to CompositeNode. However, this
CompositeNode does not contain enough information for transactions.

2. The requested URI is translated into InstanceIdentifier which points to the data node.
DataSchemaNode conforming to the data node is obtained during this translation. If the
data node is behind the mount point, the MountInstance is obtained as well.

3. CompositeNode can be normalized by adding additional information from
DataSchemaNode.

4. Restconf begins the transaction, and puts CompositeNode with InstanceIdentifier into
it. The response on the request from the client is the status code which depends on the
result from the transaction.

Something practical
1. Create a new flow on the switch openflow:1 in table 2.

HTTP request

Operation: POST
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/
node/openflow:1/table/2

OpenDaylight Developer Guide March 4, 2015 master

65

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 204 No Content

1. Change strict to true in the previous flow.

HTTP request

Operation: PUT
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/
node/openflow:1/table/2/flow/111
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>

OpenDaylight Developer Guide March 4, 2015 master

66

 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 200 OK

1. Show flow: check that strict is true.

HTTP request

Operation: GET
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/
node/openflow:1/table/2/flow/111
Accept: application/xml

HTTP response

Status: 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>

OpenDaylight Developer Guide March 4, 2015 master

67

 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

1. Delete the flow created.

HTTP request

Operation: DELETE
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/
node/openflow:1/table/2/flow/111

HTTP response

Status: 200 OK

OpenDaylight Controller: Configuration
The Controller configuration operation has three stages:

• First, a Proposed configuration is created. Its target is to replace the old configuration.

• Second, the Proposed configuration is validated, and then committed. If it passes
validation successfully, the Proposed configuration state will be changed to Validated.

• Finally, a Validated configuration can be Committed, and the affected modules can be
reconfigured.

In fact, each configuration operation is wrapped in a transaction. Once a transaction is
created, it can be configured, that is to say, a user can abort the transaction during this
stage. After the transaction configuration is done, it is committed to the validation stage.
In this stage, the validation procedures are invoked. If one or more validations fail, the
transaction can be reconfigured. Upon success, the second phase commit is invoked. If
this commit is successful, the transaction enters the last stage, committed. After that, the
desired modules are reconfigured. If the second phase commit fails, it means that the
transaction is unhealthy - basically, a new configuration instance creation failed, and the
application can be in an inconsistent state.

OpenDaylight Developer Guide March 4, 2015 master

68

Figure 5.8. Configuration states

Figure 5.9. Transaction states

OpenDaylight Developer Guide March 4, 2015 master

69

Validation
To secure the consistency and safety of the new configuration and to avoid conflicts,
the configuration validation process is necessary. Usually, validation checks the input
parameters of a new configuration, and mostly verifies module-specific relationships. The
validation procedure results in a decision on whether the proposed configuration is healthy.

Dependency resolver
Since there can be dependencies between modules, a change in a module configuration
can affect the state of other modules. Therefore, we need to verify whether dependencies
on other modules can be resolved. The Dependency Resolver acts in a manner similar to
dependency injectors. Basically, a dependency tree is built.

APIs and SPIs
This section describes configuration system APIs and SPIs.

SPIs
Module org.opendaylight.controller.config.spi. Module is the common interface for all
modules: every module must implement it. The module is designated to hold configuration
attributes, validate them, and create instances of service based on the attributes. This
instance must implement the AutoCloseable interface, owing to resources clean up. If
the module was created from an already running instance, it contains an old instance of
the module. A module can implement multiple services. If the module depends on other
modules, setters need to be annotated with @RequireInterface.

Module creation

1. The module needs to be configured, set with all required attributes.

2. The module is then moved to the commit stage for validation. If the validation fails, the
module attributes can be reconfigured. Otherwise, a new instance is either created, or
an old instance is reconfigured. A module instance is identified by ModuleIdentifier,
consisting of the factory name and instance name.

ModuleFactory org.opendaylight.controller.config.spi. The ModuleFactory interface must
be implemented by each module factory. A module factory can create a new module
instance in two ways:

• From an existing module instance

• An entirely new instance ModuleFactory can also return default modules, useful
for populating registry with already existing configurations. A module factory
implementation must have a globally unique name.

APIs
ConfigRegistry Represents functionality provided by a configuration

transaction (create, destroy module, validate, or abort
transaction).

OpenDaylight Developer Guide March 4, 2015 master

70

ConfigTransactionController Represents functionality for manipulating with
configuration transactions (begin, commit config).

RuntimeBeanRegistratorAwareConfiBean The module implementing this interface will receive
RuntimeBeanRegistrator before getInstance is invoked.

Runtime APIs
RuntimeBean Common interface for all runtime beans

RootRuntimeBeanRegistrator Represents functionality for root runtime bean
registration, which subsequently allows hierarchical
registrations

HierarchicalRuntimeBeanRegistration Represents functionality for runtime bean registration and
unreregistration from hierarchy

JMX APIs

JMX API is purposed as a transition between the Client API and the JMX platform.

ConfigTransactionControllerMXBean Extends ConfigTransactionController, executed by Jolokia
clients on configuration transaction.

ConfigRegistryMXBean Represents entry point of configuration management for
MXBeans.

Object names Object Name is the pattern used in JMX to locate
JMX beans. It consists of domain and key properties
(at least one key-value pair). Domain is defined as
"org.opendaylight.controller". The only mandatory
property is "type".

Use case scenarios

A few samples of successful and unsuccessful transaction scenarios follow:

Successful commit scenario

1. The user creates a transaction calling creteTransaction() method on ConfigRegistry.

2. ConfigRegisty creates a transaction controller, and registers the transaction as a new
bean.

3. Runtime configurations are copied to the transaction. The user can create modules and
set their attributes.

4. The configuration transaction is to be committed.

5. The validation process is performed.

6. After successful validation, the second phase commit begins.

7. Modules proposed to be destroyed are destroyed, and their service instances are closed.

8. Runtime beans are set to registrator.

9. The transaction controller invokes the method getInstance on each module.

10.The transaction is committed, and resources are either closed or released.

OpenDaylight Developer Guide March 4, 2015 master

71

Validation failure scenario The transaction is the same as the previous case until the
validation process.

1. If validation fails, (that is to day, illegal input attributes values or dependency resolver
failure), the validationException is thrown and exposed to the user.

2. The user can decide to reconfigure the transaction and commit again, or abort the
current transaction.

3. On aborted transactions, TransactionController and JMXRegistrator are properly closed.

4. Unregistration event is sent to ConfigRegistry.

Default module instances
The configuration subsystem provides a way for modules to create default instances. A
default instance is an instance of a module, that is created at the module bundle start-up
(module becomes visible for configuration subsystem, for example, its bundle is activated in
the OSGi environment). By default, no default instances are produced.

The default instance does not differ from instances created later in the module life-cycle.
The only difference is that the configuration for the default instance cannot be provided
by the configuration subsystem. The module has to acquire the configuration for these
instances on its own. It can be acquired from, for example, environment variables. After
the creation of a default instance, it acts as a regular instance and fully participates in the
configuration subsystem (It can be reconfigured or deleted in following transactions.).

OpenDaylight Controller configuration: Initial
The Initial configuration of the controller involves two methods.

Initial configuration for controller
The two ways of configuring the controller:

• Using the config.ini property file to pass configuration properties to the OSGi bundles
besides the config subsystem.

• Using the configuration persister to push the initial configuration for modules managed
by the config subsystem.

Using the config.ini property file
The config.ini property file can be used to provide a set of properties for any OSGi bundle
deployed to the controller. It is usually used to configure bundles that are not managed
by the config subsystem. For details, see the section called “OpenDaylight Controller
configuration: config.ini” [72].

Using configuration persister
Configuration persister is a default service in the controller, and is started automatically
using the OSGi Activator. Its purpose is to load the initial configuration for the config
subsystem and store a snapshot for every new configuration state pushed to the config-

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:config.ini
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Configuration:Initial#Configuration_Persister

OpenDaylight Developer Guide March 4, 2015 master

72

subsystem from external clients. For details, see the section called “OpenDaylight
Controller: Configuration Persister” [72].

OpenDaylight Controller configuration: config.ini
Various parts of the system that are not under the configuration subsystem use the
file config.ini. Changes to this file apply after a server restart. The tabulation of several
important configuration keys and values follows:

Setting Description

yangstore.blacklist=.*controller.model.* This regular expression (can be OR-ed using
pipe character) tells netconf to exclude the
yang files found in the matching bundle
symbolic name from the hello message.
This is helpful when dealing with a netconf
client that has parsing problems.

netconf.config.persister.* settings See the section called “OpenDaylight
Controller configuration: Initial” [71].

netconf.tcp.address=0.0.0.0
netconf.tcp.port=8383

netconf.ssh.address=0.0.0.0
netconf.ssh.port=1830 netconf.ssh.pk.path
= ./configuration/RSA.pk

netconf.tcp.client.address=127.0.0.1
netconf.tcp.client.port=8383

These settings specify the netconf server
bindings. IP address 0.0.0.0 is used when
all available network interfaces must be
used by the netconf server. When starting
the ssh server, the user must provide a
private key. The actual authentication is
done in the user admin module. By default,
users admin:admin and netconf:netconf
can be used to connect by means of ssh.
Since the ssh bridge acts as a proxy, one
needs to specify the netconf plaintext TCP
address and port. These settings must
normally be identical to those specified by
netconf.tcp.* .

OpenDaylight Controller: Configuration Persister
One way of configuring the controller is to use the configuration persister to push the initial
configuration for modules managed by the config subsystem.

Using configuration persister
The configuration persister is a default service in the controller, and is started automatically
using the OSGi Activator. Its purpose:

• Load the initial configuration for the config subsystem.

• Store a snapshot for every new configuration state pushed to the config-subsystem from
external clients.

It retrieves the base configuration from the config.ini property file, and tries to load the
configuration for the config subsystem. The configuration for the config subsystem is
pushed as a set of edit-config netconf rpcs followed by a commit rpc since the config
persister acts as a netconf client.

Configuration persister lifecycle:

1. Start the config persister service at config-persister-impl bundle startup.

OpenDaylight Developer Guide March 4, 2015 master

73

2. Retrieve the base configuration of the adapters from the config.ini property file.

3. Initialize the backing storage adapters.

4. Initialize the netconf client, and connect to the netconf endpoint of the config
subsystem.

5. Load the initial configuration snapshots from the latest storage adapter.

6. Send the edit-config rpc with the initial configuration snapshots.

7. Send the commit rpc.

8. Listen for any of the following changes to the configuration and persist a snapshot.

Configuration Persister interactions:

Figure 5.10. Persister

Current configuration for controller distribution
The config.ini property file contains the following configuration for the configuration
persister:

netconf.config.persister.active=1,2

netconf.config.persister.1.storageAdapterClass=org.opendaylight.controller.
config.persist.storage.directory.autodetect.AutodetectDirectoryStorageAdapter

netconf.config.persister.1.properties.directoryStorage=configuration/initial/

netconf.config.persister.1.readonly=true

OpenDaylight Developer Guide March 4, 2015 master

74

netconf.config.persister.2.storageAdapterClass=org.opendaylight.controller.
config.persist.storage.file.xml.XmlFileStorageAdapter

netconf.config.persister.2.properties.fileStorage=configuration/current/
controller.currentconfig.xml

netconf.config.persister.2.properties.numberOfBackups=1

With this configuration, the configuration persister initializes two adapters:

• AutodetectDirectoryStorageAdapter to load the initial configuration files from the
configuration/initial/ folder. These files will be pushed as the initial configuration for
the config subsystem. Since this adapter is Read only, it will not store any configuration
snapshot during the controller lifecycle.

• XmlFileStorageAdapter to store snapshots of the current configuration after any change
in the file configuration/current/controller.currentconfig.xml (Only 1 snapshot backup
is kept; every new change overwrites the previous one). The initial configuration in the
controller distribution consists of 2 files in the xml format.

• configuration/initial/00-netty.xml:

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty?
module=netty&revision=2013-11-19</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty:eventexecutor?
module=netty-event-executor&revision=2013-11-12</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty:threadgroup?
module=threadgroup&revision=2013-11-07</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty:timer?
module=netty-timer&revision=2013-11-19</capability>
 </required-capabilities>
 <configuration>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty:threadgroup">netty:netty-
threadgroup-fixed</type>
 <name>global-boss-group</name>
 </module>
 <module>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty:threadgroup">netty:netty-
threadgroup-fixed</type>
 <name>global-worker-group</name>
 </module>
 <module>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty:timer">netty:netty-
hashed-wheel-timer</type>
 <name>global-timer</name>
 </module>

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Configuration:Initial#Persisted_snapshot_format

OpenDaylight Developer Guide March 4, 2015 master

75

 <module>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty:eventexecutor">netty:netty-
global-event-executor</type>
 <name>global-event-executor</name>
 </module>
 </modules>

 <services xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-
threadgroup</type>
 <instance>
 <name>global-boss-group</name>
 <provider>/modules/module[type='netty-threadgroup-
fixed'][name='global-boss-group']</provider>
 </instance>
 <instance>
 <name>global-worker-group</name>
 <provider>/modules/module[type='netty-threadgroup-
fixed'][name='global-worker-group']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-event-
executor</type>
 <instance>
 <name>global-event-executor</name>
 <provider>/modules/module[type='netty-global-event-
executor'][name='global-event-executor']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-timer</
type>
 <instance>
 <name>global-timer</name>
 <provider>/modules/module[type='netty-hashed-wheel-
timer'][name='global-timer']</provider>
 </instance>
 </service>
 </services>
 </data>

 </configuration>
</snapshot>

This configuration snapshot instantiates netty utilities, which will be utilized by the
controller components that use netty internally.

configuration/initial/01-md-sal.xml:

<snapshot>

 <configuration>

OpenDaylight Developer Guide March 4, 2015 master

76

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom:impl">prefix:schema-
service-singleton</type>
 <name>yang-schema-service</name>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom:impl">prefix:hash-
map-data-store</type>
 <name>hash-map-data-store</name>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom:impl">prefix:dom-
broker-impl</type>
 <name>dom-broker</name>
 <data-store xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom:impl">
 <type xmlns:dom=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">dom:dom-data-
store</type>
 <!-- to switch to the clustered data store, comment
 out the hash-map-data-store <name> and uncomment the cluster-data-store one
 -->
 <name>hash-map-data-store</name>
 <!-- <name>cluster-data-store</name> -->
 </data-store>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:binding-
broker-impl</type>
 <name>binding-broker-impl</name>
 <notification-service xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
notification-service</type>
 <name>binding-notification-broker</name>
 </notification-service>
 <data-broker xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
data-broker</type>
 <name>binding-data-broker</name>
 </data-broker>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:runtime-
generated-mapping</type>
 <name>runtime-mapping-singleton</name>
 </module>
 <module>

OpenDaylight Developer Guide March 4, 2015 master

77

 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:binding-
notification-broker</type>
 <name>binding-notification-broker</name>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:binding-
data-broker</type>
 <name>binding-data-broker</name>
 <dom-broker xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">
 <type xmlns:dom=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">dom:dom-broker-
osgi-registry</type>
 <name>dom-broker</name>
 </dom-broker>
 <mapping-service xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">binding:binding-
dom-mapping-service</type>
 <name>runtime-mapping-singleton</name>
 </mapping-service>
 </module>

 </modules>

 <services xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:dom=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">dom:schema-
service</type>
 <instance>
 <name>yang-schema-service</name>
 <provider>/modules/module[type='schema-service-singleton'][name='yang-
schema-service']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
notification-service</type>
 <instance>
 <name>binding-notification-broker</name>
 <provider>/modules/module[type='binding-notification-broker'][name=
'binding-notification-broker']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:dom=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">dom:dom-data-
store</type>
 <instance>
 <name>hash-map-data-store</name>
 <provider>/modules/module[type='hash-map-data-store'][name='hash-map-
data-store']</provider>
 </instance>
 </service>

OpenDaylight Developer Guide March 4, 2015 master

78

 <service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
broker-osgi-registry</type>
 <instance>
 <name>binding-osgi-broker</name>
 <provider>/modules/module[type='binding-broker-impl'][name='binding-
broker-impl']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
rpc-registry</type>
 <instance>
 <name>binding-rpc-broker</name>
 <provider>/modules/module[type='binding-broker-impl'][name='binding-
broker-impl']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:binding-impl=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">binding-
impl:binding-dom-mapping-service</type>
 <instance>
 <name>runtime-mapping-singleton</name>
 <provider>/modules/module[type='runtime-generated-mapping'][name=
'runtime-mapping-singleton']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:dom=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">dom:dom-broker-
osgi-registry</type>
 <instance>
 <name>dom-broker</name>
 <provider>/modules/module[type='dom-broker-impl'][name='dom-broker']</
provider>
 </instance>
 </service>
 <service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
data-broker</type>
 <instance>
 <name>binding-data-broker</name>
 <provider>/modules/module[type='binding-data-broker'][name='binding-data-
broker']</provider>
 </instance>
 </service>

 </services>
 </data>

 </configuration>

 <required-capabilities>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty:eventexecutor?
module=netty-event-executor&revision=2013-11-12</capability>

OpenDaylight Developer Guide March 4, 2015 master

79

 <capability>urn:opendaylight:params:xml:ns:yang:controller:threadpool?
module=threadpool&revision=2013-04-09</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding?
module=opendaylight-md-sal-binding&revision=2013-10-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom?
module=opendaylight-md-sal-dom&revision=2013-10-28</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl?
module=opendaylight-sal-binding-broker-impl&revision=2013-10-28</
capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom:impl?
module=opendaylight-sal-dom-broker-impl&revision=2013-10-28</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:common?
module=opendaylight-md-sal-common&revision=2013-10-28</capability>
 </required-capabilities>

</snapshot>

This configuration snapshot instantiates md-sal modules.

After the controller is started, all these modules will be instantiated and configured. They
can be further referenced from the new modules as dependencies, reconfigured, or even
deleted. These modules are considered to be the base configuration for the controller and
the purpose of them being configured automatically is to simplify the process of controller
configuration for users, since the base modules will already be ready for use.

Adding custom initial configuration
There are multiple ways to add the custom initial confguration to the controller
distribution:

1. Manually create the config file, and put it in the initial configuration folder.

2. Reconfigure the running controller using the yuma yangcli tool. The
XmlFileStorageAdapter adapter will store the current snapshot, and on the next startup
of the controller (assuming it was not rebuilt since), it will load the configuration
containing the changes.

Custom initial configuration in bgpcep distribution
The BGPCEP project will serve as an example for adding the custom initial configuration.
The bgpcep project contains the custom initial configuration that is based on the initial
configuration from the controller. It adds new modules, which depend on MD-SAL and
netty modules created with the initial config files of the controller. There are multiple
config files in the bgpcep project. Only the 30-programming.xml file located under the
programming-parent/controller-config project will be described in this section. This file
contains the configuration for an instance of the instruction-scheduler module:

<?xml version="1.0" encoding="UTF-8"?>
<!-- vi: set et smarttab sw=4 tabstop=4: -->
<!--
 Copyright (c) 2013 Cisco Systems, Inc. and others. All rights reserved.

OpenDaylight Developer Guide March 4, 2015 master

80

 This program and the accompanying materials are made available under the
 terms of the Eclipse Public License v1.0 which accompanies this distribution,
 and is available at http://www.eclipse.org/legal/epl-v10.html.
-->
<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding?
module=opendaylight-md-sal-binding&revision=2013-10-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty?module=
netty&revision=2013-11-19</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:programming:impl?
module=config-programming-impl&revision=2013-11-15</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:programming:spi?
module=config-programming-spi&revision=2013-11-15</capability>
 </required-capabilities>
 <configuration>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:programming:impl">prefix:instruction-
scheduler-impl</type>
 <name>global-instruction-scheduler</name>
 <data-provider>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
data-broker</type>
 <name>binding-data-broker</name>
 </data-provider>
 <notification-service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
notification-service</type>
 <name>binding-notification-broker</name>
 </notification-service>
 <rpc-registry>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
rpc-registry</type>
 <name>binding-rpc-broker</name>
 </rpc-registry>
 <timer>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-timer</
type>
 <name>global-timer</name>
 </timer>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:pgmspi=
"urn:opendaylight:params:xml:ns:yang:controller:programming:spi">pgmspi:instruction-
scheduler</type>
 <instance>
 <name>global-instruction-scheduler</name>
 <provider>/modules/module[type='instruction-scheduler-impl'][name=
'global-instruction-scheduler']</provider>

OpenDaylight Developer Guide March 4, 2015 master

81

 </instance>
 </service>
 </services>
 </data>

 </configuration>
</snapshot>

Instruction-scheduler is instantiated as a module of type instruction-scheduler-impl with the
name global-instruction-scheduler:

<module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:programming:impl">prefix:instruction-
scheduler-impl</type>
 <name>global-instruction-scheduler</name>
 ...

There is also an alias created for this module instancfe, and the alias is global-instruction-
scheduler of type instruction-scheduler:

...
<service>
 <type xmlns:pgmspi=
"urn:opendaylight:params:xml:ns:yang:controller:programming:spi">pgmspi:instruction-
scheduler</type>
 <instance>
 <name>global-instruction-scheduler</name>
 <provider>/modules/module[type='instruction-scheduler-impl'][name='global-
instruction-scheduler']</provider>
 </instance>
</service>
...

The type of the alias is instruction-scheduler. This type refers to a certain service that
is implemented by the instruction-scheduler-impl module. With this service type, the
global-instruction-scheduler instance can be injected into any other module that requires
instruction-scheduler as a dependency. One module can provide (implement) multiple
services, and each of these services can be assigned an alias. This alias can be later used to
reference the implementation it is pointing to. If no alias is assigned by the user, a default
alias will be assigned for each provided service. The default alias is constructed from the
name of the module instance with a prefix ref_ and a possible suffix containing a number
to resolve name clashes. It is recommended that users provide aliases for each service of
every module instance, and use these aliases for dependency injection. References to the
alias global-instruction-scheduler can be found in subsequent config files in the bgpcep
project for example, 32-pcep.xml located under the pcep-parent/pcep-controller-config
project.

The configuration contains four dependencies on the MD-SAL and the netty modules:

...
<data-provider>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
data-broker</type>
 <name>binding-data-broker</name>
</data-provider>

OpenDaylight Developer Guide March 4, 2015 master

82

<notification-service>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
notification-service</type>
 <name>binding-notification-broker</name>
</notification-service>
<rpc-registry>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-
rpc-registry</type>
 <name>binding-rpc-broker</name>
</rpc-registry>
<timer>
 <type xmlns:netty=
"urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-timer</
type>
 <name>global-timer</name>
</timer>
...

MD-SAL dependencies:

• Data-provider dependency

• Notification-service dependency

• Rpc-registry dependency

All MD-SAL dependencies can be found in the MD-SAL initial configuration file. For
example, rpc-registry dependency points to an alias binding-rpc-broker of the type binding-
rpc-registry. This alias further points to an instance of the binding-broker-impl named
binding-broker-impl. The Yang module that defines the binding-broker-impl module :
opendaylight-binding-broker-impl.yang.

Netty dependencies:

• Timer dependency

This configuration expects these dependencies to be already up and ready. It is the
responsibility of the configuration subsystem to find the dependency and inject it. If
the configuration of a module points to a non-existing dependency, the configuration
subsystem will produce an exception during the validation phase. Every user-created
configuration needs to point to existing dependencies. In the case of multiple initial
configuration files that depend on one another, the resolution order can be ensured by the
names of the files. Files are sorted by their names in ascending order. This means that every
configuration file will have the visibility of modules from all previous configuration files by
means of aliases.

Note

The configuration provided by initial config files can also be pushed to the
controller at runtime using netconf client. The whole configuration located
under the data tag needs to be inserted into the config tag in the edit-config
rpc. For more information, see Examples.

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Configuration:Initial#Current_configuration_for_controller_distribution
https://git.opendaylight.org/gerrit/gitweb?p=controller.git;f=opendaylight/md-sal/sal-binding-broker/src/main/yang/opendaylight-binding-broker-impl.yang;a=blob
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Main#Examples

OpenDaylight Developer Guide March 4, 2015 master

83

Configuration Persister

As a part of the configuration subsystem, the purpose of the persister is to save and load a
permanent copy of a configuration. The Persister interface represents basic operations over
a storage - persist configuration and load last config, configuration snapshot is represented
as string and set of it’s capabilities. StorageAdapter represents an adapter interface to the
ConfigProvider - subset of BundleContext, allowing access to the OSGi framework system
properties.

Persister implementation

Configuration persister implementation is part of the Controller Netconf.
PersisterAggregator class is the implementation of the Presister interface. The functionality
is delegated to the storage adapters. Storage adapters are low level persisters that do the
heavy lifting for this class. Instances of storage adapters can be injected directly by means
of the constructor, or instantiated from a full name of its class provided in a properties file.
There can be many persisters configured, and varying numbers of them can be used.

Example of presisters configuration:

netconf.config.persister.active=2,3
 # read startup configuration
 netconf.config.persister.1.storageAdapterClass=org.opendaylight.controller.
config.persist.storage.directory.xml.XmlDirectoryStorageAdapter
 netconf.config.persister.1.properties.fileStorage=configuration/initial/

 netconf.config.persister.2.storageAdapterClass=org.opendaylight.controller.
config.persist.storage.file.FileStorageAdapter
 netconf.config.persister.2.readonly=true
 netconf.config.persister.2.properties.fileStorage=configuration/current/
controller.config.1.txt

 netconf.config.persister.3.storageAdapterClass=org.opendaylight.controller.
config.persist.storage.file.FileStorageAdapter
 netconf.config.persister.3.properties.fileStorage=configuration/current/
controller.config.2.txt
 netconf.config.persister.3.properties.numberOfBackups=3

During server startup, ConfigPersisterNotificationHandler requests the last snapshot from
the underlying storages. Each storage can respond by giving a snapshot or an absent
response. The PersisterAggregator#loadLastConfigs() will search for the first non-absent
response from storages ordered backwards as user specified (first 3, then 2). When a
commit notification is received, 2 will be omitted because the read-only flag is set to
true, so only 3 will have a chance to persist the new configuration. If read-only was
false, or not specified, both storage adapters would be called in the order specified by
netconf.config.persister property.

Persister Notification Handler
ConfigPersisterNotificationHandler class is responsible for listening for netconf notifications
containing the latest committed configuration. The listener can handle incoming
notifications, or delegates the configuration saving or loading to the persister.

OpenDaylight Developer Guide March 4, 2015 master

84

Storage Adapter implementations

XML File Storage

The XmlFileStorageAdapter implementation stores configuration in an xml file.

XML Directory Storage

XmlDirectoryStorageAdapter retrieves the initial configuration from a directory. If multiple
xml files are present, files are ordered based on the file names and pushed in this order
(for example, 00.xml, then 01.xml..) Each file defines its required capabilities, so it will
be pushed when those capabilities are advertized by ODL. Writing to this persister is not
supported.

No-Operation Storage

NoOpStorageAdapter serves as a dummy implementation of the storage adapter.

Obsolete storage adapters

• File Storage

• FileStorageAdapter implements StorageAdapter, and provides file based configuration
persisting. File path and name is stored as a property and a number of stored backups,
expressing the count of the last configurations to be persisted too. The implementation
can handle persisting input configuration, and load the last configuration.

• Directory Storage

• DirectoryStorageAdapter retrieves initial configurations from a directory. If multiple
files are present, snapshot and required capabilities will be merged together. See
configuration later on this page for details. Writing to this persister is not supported.

• Autodetect Directory Storage

• AutodetectDirectoryStorageAdapter retrieves initial configuration from a directory
(exactly as Xml Directory Storage) but supports xml as well as plaintext format for
configuration files. Xml and plaintext files can be combined in one directory. Purpose of
this persister is to keep backwards compatibility for plaintext configuration files.

Important

This functionality will be removed in later releases since Plaintext File/Directory
adapters are deprecated, and will be fully replaced by xml storage adapters.

Persisted snapshot format

Configuration snapshots are persisted in xml files for both file and directory adapters. They
share the same format:

<snapshot>

OpenDaylight Developer Guide March 4, 2015 master

85

 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:controller:netty?
module=netty&revision=2013-11-19</capability>
 ...
 </required-capabilities>
 <configuration>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 ...
 </modules>

 <services xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 ...
 </services>

 </data>

 </configuration>
</snapshot>

The whole snapshot is encapsulated in the snapshot tag that contains two children
elements:

• The required-capabilities tag contains the list of yang capabilities that are required to
push configurations located under the configuration tag. The config persister will not
push the configuration before the netconf endpoint for the config subsystem reports
all needed capabilities. Every yang model that is referenced within this xml file (as
namespace for xml tag) must be referenced as a capability in this list.

• The configuration tag contains the configurations to be pushed to the config subsystem.
It is wrapped in a data tag with the base netconf namespace. The whole data tag, with
all its child elements, will be inserted into an edit-config rpc as config tag. For more
information about the structure of configuration data, see base yang model for the
config subsystem and all the configuration yang files for the controller modules as well
as those provided examples. Examples contain multiple explained edit-config rpcs that
change the configuration.

Note

XML File adapter adds additional tags to the xml format since it supports
multiple snapshots per file.

The xml format for xml file adapter:

<persisted-snapshots>
 <snapshots>
 <snapshot>
 <required-capabilities>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:shutdown:impl?
module=shutdown-impl&revision=2013-12-18</capability>
 </required-capabilities>
 <configuration>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

OpenDaylight Developer Guide March 4, 2015 master

86

 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">

 </modules>
 <services xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 ...
 </services>
 </data>
 </configuration>
 </snapshot>
 <snapshot>
 <required-capabilities>

 <capability>urn:opendaylight:params:xml:ns:yang:controller:shutdown:impl?
module=shutdown-impl&revision=2013-12-18</capability>
 </required-capabilities>
 <configuration>
 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">

 </modules>
 <services xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 ...
 </services>
 </data>
 </configuration>
 </snapshot>
 </snapshots>
</persisted-snapshots>

MD-SAL architecture: Clustering Notifications
MD-SAL supports two kinds of messaging exchange pattern:

• Request/Reply

• Publish/Subscribe The RPC module implements the Request/Reply pattern. The
notification module implements the Publish/Subscribe functionality. The implementation
details are provided at: OpenDaylight Controller:MD-SAL:Explained:Messaging Patterns.
The focus now is on Publish/Subscribe implementation.An earlier implementation
assumed a single VM deployment of the controller.The message exchange happens only
within a VM in memory. The current requirement is to enable these notifications across
nodes in the cluster.

Publish/Subscribe notifications are of two kinds:

• Data Change events

• Yang notifications In both cases, the notifications are broadcast to all "listeners".
Requirements Some of the requirements:

• Ability to publish notifications to any subscriber in the cluster

• Subscriber ability to specify delivery policy

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Explained:Messaging_Patterns

OpenDaylight Developer Guide March 4, 2015 master

87

• 1 of N: Delivery of the notification to any one of N instances of application running in the
cluster

• N of N: Broadcasts

• Local only: Notifying events generated on the same node as the application instance

• Load Balancing: Round robin, least loaded etc

• Content Based or any other application specified custom logic

• Publisher capability to attach properties to the message

• Message priority

• Delivery guarantee

• Ability to plug-in external systems such as AMQP based systems

Proposed change

Based on the requirements, a change in the aPI was proposed:

 Yang notification
 publish(Notification notification, MessageProperties props);
 registerNotificationListener(org.opendaylight.yangtools.yang.binding.
NotificationListener.NotificationListener listener, Selector selector);
 registerNotificationListener(Class notificationType, org.opendaylight.
controller.sal.binding.api.NotificationListener listener, Selector selector);
 Data change notification
 registerDataChangeListener(LogicalDatastoreType store, P path, L listener,
 DataChangeScope triggeringScope, "Selector selector");
public interface MessageProperties{
 public Priority priority();
 ...[add more properties]
}
public enum Priority { HIGH, NORMAL, LOW};
public interface Selector {
 public List<InstanceLocator> select(Notification event, List<InstanceLocator>
 instances);
}

MD-SAL Architecture: DOM
There are several issues that impede the reliability and performance of mD-SAL:

• Data structures (defined in yang-data-api) are like XML structures. Therefore, it is hard
to implement an optimized datastore atop them. Instead, YANG-defined data structures
must be used in the data store. YANG-defined data structures are already being used in
the MD-SAL: in the Java DTOs generated by YangTools, and in other components.

• The current MD-SAL data contracts do not provide enough capabilities to more
accurately specify an the intent of an application and to perform optimizations to clients
(for example, do not unnecessarily deserialize data, or compute only necessary change
sets). The current datastore implementation prevents atomic updates on subtrees.

OpenDaylight Developer Guide March 4, 2015 master

88

MD-SAL DOM Data Broker
The current DOM Data Broker design does not include an assumption of a intelligent in-
memory cache with tree-like structures that would:

• Be able to track dependencies

• Calculate change sets

• Maintain the relationships between commit handlers, notification listeners and the actual
data. This may lead to an inefficient implementation of the two-phase commit, where all
state tracking during the is done by the Data Broker itself as follows:

1. Calculate the affected subtrees.

2. Filter the commit handlers by the affected subtrees.

3. Filter data change listeners by the affected subtrees.

4. Capture the initial state for data change listeners (one read per data change listener
set).

5. Start Request Commit of all the affected commit handlers.

6. Finish Commit on all the affected commit handlers.

7. Capture the final state for data change listeners (one read per data change listener
set).

8. Publish the Data Change events to the affected data change listeners. The states that
the current DOM Data Broke keeps and maintains are mapping of subtree paths to: *

• Registered commit handlers

• Registered data change listeners

• Registered data readers DOM Data Broker has the following state keeping
responsibilities: *

• Read request routing for data readers

• Two phase commit coordination

• Publish Data Change Events

• Capture Before and After state

MD-SAL: Infinispan Data Store

Components of Infinispan Data Store
Infinispan Data Store comprises the following major components:

• Encoding or Decoding a Normalized Node into and from the Infinispan TreeCache

OpenDaylight Developer Guide March 4, 2015 master

89

• Managing transactions

• Managing DataChange notifications

Encoding or Decoding a Normalized Node into and from the
Inifinispan TreeCache

A NormalizedNode represents a tree whose structure closely models the yang model of a
bunch of modules. The NormalizedNode tree typically has values either placed in:

• A LeafNode (corresponding to a leaf in yang)

• A LeafSetEntryNode (corresponding to a leaflist in yang) The encoding logic walks
the NormalizedNode tree looking for LeafNodes and LeafSetEntryNodes.When the
logic finds a LeafNode or a LeafSetEntryNode, it records the finding in a map with the
following:

• Instance Identifier of the parent as the key

• The value of the leaf or leafset entry store in a map where:

• The NodeIdentifier of the leaf/leafsetentry is the key.

• The value of the leaf/leafsetentry is the value. The decoding process involves the
following steps:

1. Uses the interface of TreeCache to get to a certain node in the tree

2. Walks through the tree, and reconstructs the NormalizedNode based on the key
and value in the Infinispan TreeCache

3. Validates the NormalizedNode against the schema

Managing Transactions

To ensure read-write isolation level, and for other reasons, an infinispan (JTA) transaction
for each datastore transaction is created. Since a single thread may be used for multiple
JTA transactions, the implementation has to ensure the suspension and resumption of
the JTA transactions appropriately. However, this does not seem to have an impact on
performance.

Managing DataChange notifications

The current interface for data change notifications supports the registering of listeners for
the following notifications:

• Data changes at Node (consider node of a tree) level

• Events for any changes that happen at one level (meaning immediate children)

• Any change at the subtree level The event sent to the listener requires that the following
snapshots of the tree be maintained:

OpenDaylight Developer Guide March 4, 2015 master

90

• Before data change

• After data change

Note

This process is very expensive. It means maintaining a Normalized Node
representing a snapshot of the tree. It involves converting the tree in Infinispan
to NormalizeNode object tree required by the consumer at the start of each
transaction.

To maintain the data changes:

1. At the begin of transaction, get a NormalizedNode Object tree of the current tree in
ISPN TreeCache (This is mandated by the current DataChangeEvent interface.)

2. For each CUD operations that happens within the transaction, maintain a transaction
log.

3. When the pre-commit of the 3PhaseCommit Transaction Interface is called, prepare data
changes. This involves:

a. Comparing the transaction log items with the Snapshot Tree one taken at the
beginning of the transactions

b. Preparing the DataChangeEvent lists based on what level the listeners have registered

4. Upon a commit, send the events to the listeners in a separate executor, that is
asynchronously.

Suggested changes

• Remove the requirement for sending the ‘before transaction tree’ or the ‘after
transaction tree’ within each event.

• Send the changed paths of tree to the consumer, and let the consumer do the reading.

Building the POC

To build or run the POC, you need the latest version of the following:

• Yangtools

• Controller

• OpenFlow plugin

To get yangtools

1. Get the latest yangtools sources, and then create a branch of it using the following
command: : git checkout 306ffd9eea5a52556b4877debd2a79ca0573ff0c -b infinispan-
data-store

2. Build using the following command: : mvn clean install -DskipTests

OpenDaylight Developer Guide March 4, 2015 master

91

To get the Controller
1. Get the latest controller, and then create a branch using the following command: : git

checkout 259b65622b8c29c49235c2210609b9f7a68826eb -b infinispan-data-store

2. Apply the following gerrit. : https://git.opendaylight.org/gerrit/#/c/5900/

3. Build using the following command: : mvn clean install -DskipTests

4. If the build should fails, use the following commang: : cd opendaylight/md-sal/sal-ispn-
datastore

5. Build using the following command: mvn clean install

6. Return to the controller directory, and build using: : mvn clean install -DskipTests or
resume build

To get the OpenFlowplugin
1. Get the latest openflowplugin code and then create a branch using the following

command: : git checkout 6affeefef4de51ce4b7de86fd9ccf51add3922f7 -b infinispan-
data-store

2. Build using the following command: : mvn clean install -DskipTests

3. Copy the sal-ispn-datastore jar to the plugins folder.

Running the POC
Prerequisite Ensure that the 01-md-sal.xml file has been changed to use the new MD-SAL
datastore.

• Run the controller with the infinispan datastore. The section, the section called
“Comparison of In-Memory and Infinispan Datastore” [93] provides information
about cbench testing.

Note

If you want to see performance numbers similar to those documented, disable
datachange notifications. The only way to do that in the POC is to change the
code in ReadWriteTransactionImpl. Look for the FIXME comments.

State of the POC
• Encoding and Decoding a Normalized Node into an Infinispan TreeCache works

• Integrated with the controller

• Eventing works

• With Data Change events disabled, the Infinispan based datastore performs the same, or
better than, the custom In-Memory Datastore. Although initially slow, with time it seems
to perform more consistently than the In-Memory Datastore.,

https://git.opendaylight.org/gerrit/#/c/5900/

OpenDaylight Developer Guide March 4, 2015 master

92

• Not fully tested

Infinispan-related learnings
Below par functioning of TreeCache#removeNode API The Infinispan removeNode API
failed to remove nodes in the tree, as was promised, correctly. This means, for example,
that when a mininet topology changes, some nodes may not be removed from inventory
and topology. This behaviour has not been properly evaluated, and no remedy is currently
available.

Datastore-related learnings
Multiple transactions can be created per thread This is a problem because if the backing
datastore (infinispan) uses JTA transactions, only one transaction can be active per thread.
Although this does not necessarily mean the usage of one thread per transaction, it calls for
the suspension of one transaction and the resumption of another. TIP:: * Allow only one
active transaction per thread. * Add an explicit suspend or resume method to a transaction.

No clarity on the closing of Read-Only
transactions

For every DataStore transaction, a JTA transaction needs to be created. This is to ensure
isolation (repeatable reads). When the transaction is done, it must be committed, rolled
back, or closed in some fashion. Read-only transactions may not close. This leads to JTA
transactions being open until they are timed out.

TIP • A DataStore may need to do time-outs as well.

• Call close explicitly for read-only transactions.

Write and Delete methods in a read-write transaction do
not return a Future

The Write and Delete methods on the DOMWriteTransaction return a void instead of a
Future, creating the impression that these methods are synchronous. This is not necessarily
true in all cases: for example, in the infinispan datastore, the write was actually done
in a separate thread to support multiple transactions on a single thread. TIP: Return a
ListenableFuture for both Write and Delete methods.

Expense of creating a DataChange event

Creating a DataChange event is very expensive because it needs to pass the Original Sub
tree and the Modified Sub tree. A NormalizedNode object needs to be created to create
a DataChange event. The NormalizedNode object may be a snapshot of the complete
modules data to facilitate the sending of the original subtree to DataChange listeners. The
prohibitive expense prevents this implementation in every transaction. This is a problem not
only in the infinispan datastore but also in a distributed system. A distributed system shards
data to collocate it on a different node on the cluster with applications and datachange

OpenDaylight Developer Guide March 4, 2015 master

93

listeners. For example, while a system may have shards collocated with the inventory
application; the topology application may be a datachange listener for datachange events.
In this case, the original subtree and the modified sub tree would need to be serialized
in some form, and sent to the topology listener. TIP: Remove the getOriginalSubtree and
getModifiedSubtree methods from the datachange listener; understand the use case for
providing them; and find a cheaper alternative.

Complications of reconstructing a Normalized Node from
different data-structures

The reconstruction of a Normalized Node from a different data-structure, like a map or
a key-value store, is complicated or may appear complicated. A NormalizedNode is the
binding-independent equivalent of data that gets stored in the datastore. For the in-
memory datastore, it is the native storage format. It is a complicated structure that basically
mirrors the model as defined in yang. Understanding it and properly decoding it could be
a challenge for the implemention of an alternate datastore. TIP: Create utility classes to
construct a normalized node from a simple tree structure. The Old CompositeNode or the
Infinispan Node for example is a much simpler structure to follow.

Comparison of In-Memory and Infinispan Datastore
Cbench was used to compare the performance of the two datastores. To prepare the
controller for testing:

Important

Use the openflow plugin distribution.

1. Remove the simple forwarding, arp handler, and md-sal statistics manager bundles.

2. Set the log level to ERROR.

3. Run the controller with the following command: : ./run.sh -Xmx4G -Xms2G -
XX:NewRatio=5 -XX:+UseG1GC -XX:MaxPermSize=256m

4. From the osgi command prompt, use dropAllPackets on.

Running cbench
For both the in-memory and infinispan datastore versions, cbench was run 11 times. The
first run is ignored in both cases.

• Use the cbench command: : cbench -c <controller ip> -p 6633 -m 1000 -l 10 -s 16 -M 1000
This was a latency test and the arguments roughly translate to this: : -m 1000 : use 1000
milliseconds per test -l 10 : use 10 loops per test -s 16 : fake 16 switches -M 1000 : use
1000 hosts per switch </div>

The results for In-Memory Datastore
To test the in-memory datastore, a pre-built openflow plugin distribution from Jenkins
was downloadedon and on which was enabled the new in-memory datastore. In-Memory
Datastore Results

OpenDaylight Developer Guide March 4, 2015 master

94

Run Min Max Avg StdDev

1 365 1049 715 04

2 799 1044 953 71

3 762 949 855 59

4 616 707 666 27

5 557 639 595 24

6 510 583 537 25

7 455 535 489 22

8 351 458 420 38

9 396 440 417 14

10 376 413 392 13

Infinispan Datastore
The Infinispan Datastore was built of a master a month old. Since the In-Memory datastore
was hardcoded at that time the in-memory datastore was swapped for the the infinispan
datastore by modifying the sal-broker-impl sources.

Listed are some steps that were either completed to isolate the changes that were being
made, or to tweak performance:

• Infinispan 5.3 was used because to isolate changes to utilize tree cache to the infinispan
datastore bundles. Attempting to use version 6.0 caused a problem in loading some
classes from infinispan.Ideally, to use infinispan as a backing store, tweak clustering
services to obtain a treecache.

• Added an exists method onto the In-Memory ReadTransaction API. This was because it
was found that in one place in the BA Broker was code which checked for the existence
of nodes in the tree by doing a read. Reads are a little expensive on the Infinispan
datastore because of the need to convert to a NormalizedNode. An exists method was
added to the interface to just check for node-existence.

• When a transaction was used to read data it was not being closed causing the
Infinispan JTA transactions to persist. Again, a change in the broker was made to close
a transaction after it was concluded so that it dis not persist and trigger a clean by the
reaper.

Infinispan Datastore Results

Run Min Max Avg StdDev

1 43 250 186 61

2 266 308 285 13

3 300 350 325 12

4 378 446 412 24

5 609 683 644 26

6 492 757 663 76

7 794 838 816 11

8 645 845 750 60

9 553 829 708 100

10 615 910 710 86

OpenDaylight Developer Guide March 4, 2015 master

95

OpenDaylight Controller configuration: FAQs

Generic questions about the configuration subsystem
There is already JMX. Why do we need another system?

Java Management Extensions (JMX) provides programmatic access to management
data, defining a clear structure on the level of a single object (MBeans). It provides the
mechanism to query and set information exposed from these MBeans, too. It is adequate
for replacing properties, but it does not treat the JVM container for what it is: a collection
of applications working in concert. When the configuration problem is taken to the level of
an entire system, there are multiple issues which JMX does not solve:

• The need to validate that a proposed system is semantically valid before an attempt to
change is made

• The ability to synchronize modification multiple properties at the same time, such that
both occur at the same time

• The ability to express dependencies between applications

• Machine-readable descriptions of layouts of configuration data

Why use YANG?

The problem of configuring a device has been tackled in IETF for many years now,
initially using SNMP (with MIB as the data definition language). While the protocol
has been successful for monitoring devices, it has never gained traction as the unified
way of configuring devices. The reasons for this have been analyzed and NETCONF was
standardized as the successor protocol. NETCONF provides the abstractions to deal
with configuration validation, and relies on YANG as its data modeling language. The
configuration subsystem is designed to completely align with NETCONF such that it can be
used as the native transport with minimal translation.

OpenDaylight Controller configuration:
Component map

Component Description

config-subsystem-core Config subsystem core. Manages the
configuration of the controller.

Responsibilities:

• Scanning of bundles for ModuleFactories.

• Transactional management of lifecycle
and dependency injection for config
modules.

• Exposure of modules and their
configuration into JMX.

netty-config Config modules for netty related resources,
for example, netty-threadgroup, netty-
timer and others.

https://ietf.org/
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://en.wikipedia.org/wiki/Management_information_base
https://tools.ietf.org/html/rfc3535
https://datatracker.ietf.org/doc/rfc6241/
http://tools.ietf.org/html/rfc6020

OpenDaylight Developer Guide March 4, 2015 master

96

Component Description

Contains config module definition in the
form of yang schemas + generated code
binding for the config subsystem.

controller-shutdown Controller shutdown mechanism.

Brings down the whole OSGi container of
the controller.

Authorization required in the form of a
"secret string".

Also contains config module definition in
the form of yang schemas + generated
code binding for the config subsystem. This
makes it possible to invoke shutdown by
means of the config-subsystem.

threadpool-config Config modules for threading related
resources, for example, threadfactories,
fixed-threadpool, and others.

Contains config module definition in the
form of yang schemas + generated code
binding for the config subsystem.

logback-config Config modules for logging (logback)
related resources, for example, loggers,
appenders, and others.

Contains config module definition in the
form of yang schemas + generated code
binding for the config subsystem.

netconf-config-dispatcher-config Config modules for netconf-
dispatcher(from netconf subsystem).

Contains config module definition in the
form of yang schemas + generated code
binding for the config subsystem.

yang-jmx-config-generator Maven plugin that generates the config
subsystem code binding from provided
yang schemas. This binding is required
when the bundles want to participate in
the config subsystem.

yang-jmx-config-generator-testing-modules Testing resources for the maven plugin.

config-persister Contains the api definition for an extensible
configuration persister(database for
controller configuration).

The persister (re)stores the configuration
for the controller. Persister implementation
can be found in the netconf subsystem.

The adapter bundles contain concrete
implementations of storage extension.
They store the config as xml files on the
filesystem.

config-module-archetype Maven archetype for "config subsystem
aware" bundles.

This archetype contains blueprints for yang-
schemas, java classes, and other files(for
example, pom.xml) required for a bundle
to participate in the config subsystem.

OpenDaylight Developer Guide March 4, 2015 master

97

Component Description

This archetype generates a bundle skeleton
that can be developed into a full blown
"config subsystem aware" bundle.

OpenDaylight Controller: Netconf component
map

Component Description

netconf-server Implementation of the generic (extensible)
netconf server over tcp/ssh. Handles the
general communication over the network,
and forwards the rpcs to its extensions that
implement the specific netconf rpc handles
(For example: get-config).

netconf-to-config-mapping API definition for the netconf server
extension with the base implementation
that transforms the netconf rpcs to java
calls for the config-subsystem (config-
subsystem netconf extension).

netconf-client Netconf client basic implementation.
Simple netconf client that supports netconf
communication with remote netconf
devices using xml format.

netconf-monitoring Netconf-monitoring yang schemas with
the implementation of a netconf server
extension that handles the netconf-
monitoring related handlers (For example:
adding netconf-state to get rpc)

config-persister-impl Extensible implementation of the config
persister that persists the configuration
in the form of xml,(easy to inject to
edit-config rpc) and loads the initial
configuration from the persisted files.
The configuration is stored after every
successful commit rpc.

netconf-cli Prototype of a netconf cli.

OpenDaylight Controller Configuration: Examples
sample project

Sample maven project

In this example, we will create a maven project that provides two modules, each
implementing one service. We will design a simple configuration, as well as runtime data
for each module using yang. A sample maven project called config-demo was created.
This project contains two Java interfaces: Foo and Bar. Each interface has one default
implementation per interface, FooImpl and BarImpl. Bar is the producer in our example
and produces integers when the method getNextEvent() is called. Foo is the consumer,
and its implementation depends on a Bar instance. Both implementations require some
configuration that is injected by means of constructors.

• Bar.java:

package org.opendaylight.controller.config.demo;

OpenDaylight Developer Guide March 4, 2015 master

98

public interface Bar {

 int getNextEvent();

}

• BarImpl.java:

package org.opendaylight.controller.config.demo;

public class BarImpl implements Bar {

 private final int l1, l2;
 private final boolean b;

 public BarImpl(int l1, int l2, boolean b) {
 this.l1 = l1;
 this.currentL = l1;
 this.l2 = l2;
 this.b = b;
 }

 private int currentL;

 @Override
 public int getNextEvent() {
 if(currentL==l2)
 return -1;
 return currentL++;
 }
}

• Foo.java:

package org.opendaylight.controller.config.demo;

public interface Foo {

 int getEventCount();
}

• FooImpl.java:

package org.opendaylight.controller.config.demo;

public class FooImpl implements Foo {

 private final String strAttribute;
 private final Bar barDependency;
 private final int intAttribute;

 public FooImpl(String strAttribute, int intAttribute, Bar barDependency) {
 this.strAttribute = strAttribute;
 this.barDependency = barDependency;
 this.intAttribute = intAttribute;
 }

 @Override
 public int getEventCount() {
 int count = 0;

OpenDaylight Developer Guide March 4, 2015 master

99

 while(barDependency.getNextEvent() != intAttribute) {
 count++;
 }
 return count;
 }
}

• pom.xml (config-demo project is defined as a sub-module of the controller project, and
at this point contains only the configuration for maven-bundle-plugin):

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <artifactId>commons.opendaylight</artifactId>
 <groupId>org.opendaylight.controller</groupId>
 <version>1.4.1-SNAPSHOT</version>
 <relativePath>../commons/opendaylight/pom.xml</relativePath>
 </parent>
 <groupId>org.opendaylight.controller</groupId>
 <version>0.1.1-SNAPSHOT</version>
 <artifactId>config-demo</artifactId>
 <packaging>bundle</packaging>
 <name>${project.artifactId}</name>
 <prerequisites>
 <maven>3.0.4</maven>
 </prerequisites>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.4.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-Name>${project.groupId}.${project.
artifactId}</Bundle-Name>
 <Export-Package>
 org.opendaylight.controller.config.demo,
 </Export-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

Describing the module configuration using yang
In order to fully leverage the utilities of the configuration subsystem, we need to describe
the services, modules, their configurations, and the runtime state using the yang modeling
language. We will define two services and two modules, which will be used to configure

OpenDaylight Developer Guide March 4, 2015 master

100

the instances of FooImpl and BarImpl. This definition will be split into two yang files: config-
demo.yang (service definition) and config-demo-impl.yang (module definition).

• config-demo.yang

module config-demo {
 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:controller:config:demo";
 prefix "demo";

 import config { prefix config; revision-date 2013-04-05; }

 description
 "Service definition for config-demo";

 revision "2013-10-14" {
 description
 "Initial revision";
 }

 // Service definition for service foo that encapsulates instances of org.
opendaylight.controller.config.demo.Foo
 identity foo {
 description
 "Foo service definition";

 base "config:service-type";
 config:java-class "org.opendaylight.controller.config.demo.Foo";
 }

 identity bar {
 description
 "Bar service definition";

 base "config:service-type";
 config:java-class "org.opendaylight.controller.config.demo.Bar";
 }
}

The config yang module needs to be imported in order to define the services. There are
two services defined, and these services correspond to the Java interfaces Foo and Bar
(specified by the config:java-class extension).

• config-demo-impl.yang

module config-demo-impl {

 yang-version 1;
 namespace
 "urn:opendaylight:params:xml:ns:yang:controller:config:demo:java";
 prefix "demo-java";

 // Dependency on service definition for config-demo
 /* Service definitions could be also located in this yang file or even
 * in a separate maven project that is marked as maven dependency
 */
 import config-demo { prefix demo; revision-date 2013-10-14;}

 // Dependencies on config subsystem definition
 import config { prefix config; revision-date 2013-04-05; }

OpenDaylight Developer Guide March 4, 2015 master

101

 import rpc-context { prefix rpcx; revision-date 2013-06-17; }

 description
 "Service implementation for config-demo";

 revision "2013-10-14" {
 description
 "Initial revision";
 }
 //-----
 module foo-impl ----- //
 // Module implementing foo service
 //
 identity foo-impl {
 //
 base config:module-type;
 //
 config:provided-service demo:foo;
 //
 config:java-name-prefix FooImpl;
 //
 }
 //

 //
 // Configuration for foo-impl module
 //
 augment "/config:modules/config:module/config:configuration" {
 //
 case foo-impl {
 //
 when "/config:modules/config:module/config:type = 'foo-impl'";
 //

 //
 leaf str-attribute {
 //
 type string;
 //
 }
 //

 //
 leaf int-attribute {
 //
 type int32;
 //
 }
 //

 //

 //
 // Dependency on bar service instance
 //
 container bar-dependency {
 //
 uses config:service-ref {
 //

OpenDaylight Developer Guide March 4, 2015 master

102

 refine type {
 //
 mandatory true;
 //
 config:required-identity demo:bar;
 //
 }
 //
 }
 //
 }
 //

 //
 }
 //
 }
 //

 //
 // Runtime state definition for foo-impl module
 //
 augment "/config:modules/config:module/config:state" {
 //
 case foo-impl {
 //
 when "/config:modules/config:module/config:type = 'foo-impl'";
 //

 //

 //
 }
 //
 }
 //

 // ---------- //
 // Module implementing bar service
 identity bar-impl {
 base config:module-type;
 config:provided-service demo:bar;
 config:java-name-prefix BarImpl;
 }

 augment "/config:modules/config:module/config:configuration" {
 case bar-impl {
 when "/config:modules/config:module/config:type = 'bar-impl'";

 container dto-attribute {
 leaf int-attribute {
 type int32;
 }

 leaf int-attribute2 {
 type int32;
 }

 leaf bool-attribute {
 type boolean;

OpenDaylight Developer Guide March 4, 2015 master

103

 }
 }

 }
 }

 augment "/config:modules/config:module/config:state" {
 case bar-impl {
 when "/config:modules/config:module/config:type = 'bar-impl'";

 }
 }

}

The config yang module as well as the config-demo yang module need to be imported.
There are two modules defined: foo-impl and bar-impl. Their configuration (defined in the
augment "/config:modules/config:module/config:configuration" block) corresponds to the
configuration of the FooImpl and BarImpl Java classes. In the constructor of FooImpl.java,
we see that the configuration of foo-impl module defines three similar attributes. These
arguments are used to instantiate the FooImpl class. These yang files are placed under the
src/main/yang folder.

Updating the maven configuration in pom.xml

The yang-maven-plugin must be added to the pom.xml. This plugin will process the yang
files, and generate the configuration code for the defined modules. Plugin configuration:

<plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 <version>${yangtools.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 <configuration>
 <codeGenerators>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.controller.config.
yangjmxgenerator.plugin.JMXGenerator
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-
sources/config</outputBaseDir>
 <additionalConfiguration>
 <namespaceToPackage1>

 urn:opendaylight:params:xml:ns:yang:controller==org.opendaylight.controller.
config.yang
 </namespaceToPackage1>
 </additionalConfiguration>
 </generator>
 </codeGenerators>
 <inspectDependencies>true</inspectDependencies>
 </configuration>
 </execution>

OpenDaylight Developer Guide March 4, 2015 master

104

 </executions>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>yang-jmx-generator-plugin</artifactId>
 <version>${config.version}</version>
 </dependency>
 </dependencies>
</plugin>

The configuration important for the plugin: the output folder for the generated files, and
the mapping between the yang namespaces and the java packages (Inspect dependencies
must be set to true.). The default location for the yang files is under the src/main/yang
folder. This plugin is backed by the artifact yang-jmx-generator-plugin and its class
org.opendaylight.controller.config.yangjmxgenerator.plugin.JMXGenerator is responsible
for code generation. This artifact is part of the configuration subsystem.

In addition to the yang-maven-plugin, it is neccessary to add the build-helper-maven-plugin
in order to add the generated sources to the build process:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.8</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${project.build.directory}/generated-sources/
config</source>;
 </sources>
 </configuration>
 </execution>
 </executions>
</plugin>

Earlier, the configuration yang module in the yang files was imported. In order to acquire
this yang module, we need to add a dependency to the pom file:

<dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>config-api</artifactId>
 <version>${config.version}</version>
</dependency>

In addition, a couple of utility dependencies must be added:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
</dependency>
<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>

OpenDaylight Developer Guide March 4, 2015 master

105

</dependency>

Run mvn clean install.

Generated java files
A set of new source files divided into two groups is seen. The first group is located
under the ${project.build.directory}/generated-sources/config directory, which
was specified in the yang-maven-plugin configuration. The second group is
located under the src/main/java directory. Both groups then define the package
org.opendaylight.controller.config.yang.config.demo.impl. The first group contains code
that must not be edited in any way, since this code can be regenerated by the plugin if
necessary. The code that needs to be edited belongs to the second group and is located
under src/main/java.

Generated config source files examples

• BarImplModuleMXBean.java

public interface BarImplModuleMXBean
{
 public org.opendaylight.controller.config.yang.config.demo.java.
DtoAttribute getDtoAttribute();

 public void setDtoAttribute(org.opendaylight.controller.config.yang.
config.demo.java.DtoAttribute dtoAttribute);

}

The BarImplModuleMXBean interface represents the getter and the setter for dtoAttribute
that will be exported to the configuration registry by means of JMX. The attribute was
defined in the yang model: in this case, it is the composite type which was converted to
OpenType.

• Attribute definition from config-demo-impl.yang

// Module implementing bar service
 identity bar-impl {
 base config:module-type;
 config:provided-service demo:foo;
 config:java-name-prefix BarImpl;
 }

 augment "/config:modules/config:module/config:configuration" {
 case bar-impl {
 when "/config:modules/config:module/config:type = 'bar-impl'";

 container dto-attribute {
 leaf int-attribute {
 type int32;
 }

 leaf int-attribute2 {
 type int32;
 }

 leaf bool-attribute {

OpenDaylight Developer Guide March 4, 2015 master

106

 type boolean;
 }
 }

 }
 }

From the container dto-attribute, the DtoAttribute java file was generated. The
Class contains the plain constructor, and the getters and setters for the attributes
defined as container leaves. Not only is ModuleMXBean generated from this
module definition, but also BarImplModuleFactory and BarImplModule stubs (in fact
AbstractBarImplModuleFactory and AbstractBarImplModule are generated too.).

• AbstractBarImplModule.java This abstract class is almost fully generated: only the
method validate() has an empty body and the method createInstance() is abstract. The
user must implement both methods by user. AbstractBarImplModule implements its
ModuleMXBean, Module, RuntimeBeanRegistratorAwareModule, and the dependent
service interface as defined in yang. Moreover, the class contains two types of
constructors: one for the module created from the old module instance, and the second
for module creation from scratch.

• AbstractBarImplModuleFactory.java Unlike AbstractModule, AbstractFactory is fully
generated, but it is still an abstract class. The factory is responsible for module instances
creation, and provides two type of instantiateModule methods for both module
constructor types. It implements the ModuleFactory interface.

Next, create the runtime bean for FooImplModule. Runtime beans are designated to
capture data about the running module.

• Add runtime bean definition to config-demo-impl.yang

Modifying generated sources

Generated source files:

• src/main/java/**/BarImplModule

• src/main/java/**/BarImplModuleFactory

• src/main/java/**/FooImplModule

• src/main/java/**/FooImplModuleFactory

BarImplModule We will start by modifying BarImplModule. Two constructors and two
generated methods are seen:

@Override
 public void validate(){
 super.validate();
 // Add custom validation for module attributes here.
 }

 @Override
 public java.lang.AutoCloseable createInstance() {
 //TODO:implement
 throw new java.lang.UnsupportedOperationException("Unimplemented stub
 method");

OpenDaylight Developer Guide March 4, 2015 master

107

 }

In validate, specify the validation for configuration attributes, for example:

@Override
 public void validate(){
 super.validate();
 Preconditions.checkNotNull(getDtoAttribute());
 Preconditions.checkNotNull(getDtoAttribute().getBoolAttribute());
 Preconditions.checkNotNull(getDtoAttribute().getIntAttribute());
 Preconditions.checkNotNull(getDtoAttribute().getIntAttribute2());
 Preconditions.checkState(getDtoAttribute().getIntAttribute() >
 getDtoAttribute().getIntAttribute2());
 }

In createInstance you need to create a new instance of the bar service # Bar interface, for
example:

@Override
 public java.lang.AutoCloseable createInstance() {
 return new BarImpl(getDtoAttribute().getIntAttribute(),
 getDtoAttribute().getIntAttribute2(), getDtoAttribute()
 .getBoolAttribute());
 }

Notes:

• createInstance returns AutoCloseable so the returned type needs to implement it. (You
can make BarImpl implement AutoCloseable, or create a Wrapper class around the
BarImpl instance that implements AutoCloseable, or even extend the BarImpl class and
make it implement it.)

• You can access all the configuration attributes by means of the getter methods.

• In config-demo-impl.yang, we defined the bar-impl configuration as a container dto-
attribute. The code generator creates a transfer object DtoAttribute that you can access
by means of the getDtoAttribute() method, and retrieve configuration data from it. You
can even add a new constructor to BarImpl that takes this transfer object, and reduces
the number of arguments.

FooImplModule We will not add any custom validation in this module. The createInstance
method will look as follows:

 @Override
 public java.lang.AutoCloseable createInstance() {
 return new FooImpl(getStrAttribute(), getIntAttribute(),
 getBarDependencyDependency());
 }

Adding support for default instances

In order to provide a default instance of module bar-impl, we need to further modify
the generated code by the overriding method getDefaultModules in src/main/java/**/
BarImplModuleFactory class. The body of this class is empty thus far, and it inherits the
default behaviour from its parent abstract factory. Use the following code to replace the
empty body:

OpenDaylight Developer Guide March 4, 2015 master

108

public static final ModuleIdentifier defaultInstance1Id = new
 ModuleIdentifier(NAME, "defaultInstance1");

 @Override
 public Set<BarImplModule> getDefaultModules(DependencyResolverFactory
 dependencyResolverFactory, BundleContext bundleContext) {
 DependencyResolver depResolver1 = dependencyResolverFactory.
createDependencyResolver(defaultInstance1Id);
 BarImplModule defaultModule1 = new BarImplModule(defaultInstance1Id,
 depResolver1);
 defaultModule1.
setDtoAttribute(getDefaultConfiguration(bundleContext));

 return Sets.newHashSet(defaultModule1);
 }

 private DtoAttribute getDefaultConfiguration(BundleContext bundleContext)
 {
 DtoAttribute defaultConfiguration = new DtoAttribute();

 String property = bundleContext.getProperty("default.bool");
 defaultConfiguration.setBoolAttribute(property == null ? false :
 Boolean.parseBoolean(property));

 property = bundleContext.getProperty("default.int1");
 defaultConfiguration.setIntAttribute(property == null ? 55 : Integer.
parseInt(property));

 property = bundleContext.getProperty("default.int2");
 defaultConfiguration.setIntAttribute2(property == null ? 0 : Integer.
parseInt(property));

 return defaultConfiguration;
 }

The getDefaultModules method now produces an instance of the bar-impl module with the
name defaultInstance1. (It is possible to produce multiple default instances since the return
type is a Set of module instances.) Note the getDefaultConfiguration method. It provides
the default configuration for default instances by trying to retrieve system properties from
bundleContext (or provides hardcoded values in case the system property is not present).

For the controller distribution, system properties can be fed by means of config.ini file.

The method getDefaultModules is called automatically after a bundle containing this
factory is started in the OSGi environment. Its default implementation returns an empty
Set.

The default instances approach is similar to the Activator class approach in OSGi with
the advantage of default instances being managed by the configuration subsystem. This
approach can either replace the Activator class approach, or be used along with it.

Verifying the default instances in distribution

If we add the config-demo bundle to the opendaylight distribution, we can verify the
presence of the default instance. The file pom.xml under the opendaylight/distribution/
opendaylight folder needs to be modified by adding the config-demo dependency:

<dependency>

OpenDaylight Developer Guide March 4, 2015 master

109

 <groupId>${project.groupId}</groupId>
 <artifactId>config-demo</artifactId>
 <version>0.1.1-SNAPSHOT</version>
</dependency>

Now we need to rebuild the conf-demo module using mvn clean install. Then, we can
build the distribution using the same mvn command under the opendaylight/distribution/
opendaylight folder. If we go to the opendaylight/distribution/opendaylight/target/
distribution.opendaylight-osgipackage/opendaylight folder, and execute run.sh, the
opendaylight distribution should start.

We can check the presence of the default instances by means of JMX using a tool such as
jvisualvm.

OpenDaylight Controller:Configuration examples
user guide

Configuring thread pools with yangcli-pro

Requirements: yangcli-pro version 13.04-9.2 or later

Connecting to plaintext TCP socket and ssh

Currently SSH is exposed by the controller. The network interface and port are configured
in configuration/config.ini . The current configuration of netconf is as follows:

Netconf startup configuration
#netconf.tcp.address=127.0.0.l
#netconf.tcp.port=8383

netconf.ssh.address=0.0.0.0
netconf.ssh.port=1830

To connect the yangcli-pro client, use the following syntax:

yangcli-pro --user=admin --password=admin --transport=ssh --ncport=1830 --
server=localhost

If the plaintext TCP port is not commented out, one can use the following:

yangcli-pro --user=a --password=a --transport=tcp --ncport=8383 --server=
localhost

Authentication in this case is ignored.

For better debugging, include following arguments:

--log=/tmp/yuma.log --log-level=debug4 --log-console

Note

When the log file is set, the output will not appear on stdout.

OpenDaylight Developer Guide March 4, 2015 master

110

Configuring threadfactory

The threadfactory is a service interface that can be plugged into threadpools, defined
in config-threadpool-api (see the yang file. The implementation to be used is called
threadfactory-naming. This implementation will set a name for each thread created using a
configurable prefix and auto incremented index. See the Yang file.

1. Launch yangcli-pro and connect to the server.

2. Enter get-config source=running to see the current configuration. Example output:

rpc-reply {
 data {
 modules {
 module binding-broker-singleton {
 type binding-impl:binding-broker-impl-singleton
 name binding-broker-singleton
 }
 }
 services {
 service md-sal-binding:binding-broker-osgi-registry {
 type md-sal-binding:binding-broker-osgi-registry
 instance ref_binding-broker-singleton {
 name ref_binding-broker-singleton
 provider /modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']
 }
 }
 }
 }
}

1. Enter the merge /modules/module.

2. At the prompt, enter the string value for the leaf <name>. This is the name of the config
module. Enter threadfactory-bgp.

3. Set the identityref for the leaf <type>. Press Tab to see a list of available module names.
Enter threadfactory-naming.

4. At the prompt, choose the case statement. Example output:

 1: case netty-threadgroup-fixed:
 leaf thread-count
 2: case netty-hashed-wheel-timer:
 leaf tick-duration
 leaf ticks-per-wheel
 container thread-factory
 3: case async-eventbus:
 container threadpool
 4: case threadfactory-naming:
 leaf name-prefix
 5: case threadpool-fixed:
 leaf max-thread-count
 container threadFactory
 6: case threadpool-flexible:
 leaf max-thread-count
 leaf minThreadCount
 leaf keepAliveMillis

https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/config/threadpool-config-api/src/main/yang/threadpool.yang;h=8f3064822be319dfee6fd7c7061c8bee14db268f;hb=refs/heads/master
https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/config/threadpool-config-impl/src/main/yang/threadpool-impl.yang;h=a2366f285a0c0b8682b1093f18fb5ee184c9cde3;hb=refs/heads/master

OpenDaylight Developer Guide March 4, 2015 master

111

 container threadFactory
 7: case threadpool-scheduled:
 leaf max-thread-count
 container threadFactory
 8: case logback:
 list file-appenders
 list rolling-appenders
 list console-appenders
 list loggers

In this case, we chose 4.

1. Next fill in the string value for the leaf <name-prefix>. Enter bgp. : (You should get an
OK response from the server.)

2. Optionally issue get-config source=candidate to verify the change.

3. Issue commit.

4. Issue get-config source=running. Example output:

rpc-reply {
 data {
 modules {
 module binding-broker-singleton {
 type binding-impl:binding-broker-impl-singleton
 name binding-broker-singleton
 }
 module threadfactory-bgp {
 type th-java:threadfactory-naming
 name threadfactory-bgp
 name-prefix bgp
 }
 }
 services {
 service th:threadfactory {
 type th:threadfactory
 instance ref_threadfactory-bgp {
 name ref_threadfactory-bgp
 provider /modules/module[type='threadfactory-naming'][name=
'threadfactory-bgp']
 }
 }
 service md-sal-binding:binding-broker-osgi-registry {
 type md-sal-binding:binding-broker-osgi-registry
 instance ref_binding-broker-singleton {
 name ref_binding-broker-singleton
 provider /modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']
 }
 }
 }
 }
}

Configuring fixed threadpool
Service interface threadpool is defined in the config-threadpool-api. The implementation
used is called threadpool-fixed that is defined in config-threadpool-impl. This

OpenDaylight Developer Guide March 4, 2015 master

112

implementation creates a threadpool of fixed size. There are two mandatory attributes:
size and dependency on a threadfactory.

1. Issue get-config source=running. As you can see in the last step of configuring
threadfactory, /services/service, the node associated with it has instance name
ref_threadfactory-bgp.

2. Issue merge /modules/module.

3. Enter the name bgp-threadpool.

4. Enter the type threadpool.

5. Select the appropriate case statement.

6. Enter the value for leaf <max-thread-count>: 100.

7. Enter the threadfactory for attribute threadfactory/type. This is with reference to /
services/service/type, in other words, the service interface.

8. Enter ref_threadfactory-bgp. Server response must be an OK message.

9. Issue commit.

10.Issue get-config source=running. Example output:

rpc-reply {
 data {
 modules {
 module binding-broker-singleton {
 type binding-impl:binding-broker-impl-singleton
 name binding-broker-singleton
 }
 module bgp-threadpool {
 type th-java:threadpool-fixed
 name bgp-threadpool
 threadFactory {
 type th:threadfactory
 name ref_threadfactory-bgp
 }
 max-thread-count 100
 }
 module threadfactory-bgp {
 type th-java:threadfactory-naming
 name threadfactory-bgp
 name-prefix bgp
 }
 }
 services {
 service th:threadpool {
 type th:threadpool
 instance ref_bgp-threadpool {
 name ref_bgp-threadpool
 provider /modules/module[type='threadpool-fixed'][name='bgp-
threadpool']
 }
 }

OpenDaylight Developer Guide March 4, 2015 master

113

 service th:threadfactory {
 type th:threadfactory
 instance ref_threadfactory-bgp {
 name ref_threadfactory-bgp
 provider /modules/module[type='threadfactory-naming'][name=
'threadfactory-bgp']
 }
 }
 service md-sal-binding:binding-broker-osgi-registry {
 type md-sal-binding:binding-broker-osgi-registry
 instance ref_binding-broker-singleton {
 name ref_binding-broker-singleton
 provider /modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']
 }
 }
 }
 }
}

To see the actual netconf messages, use the logging arguments described at the top of this
page. To validate that a threadpool has been created, a tool like VisualVM can be used.

Logback configuration - Yuma

This approach to configure logback will utilize a 3rd party cli netconf client from Yuma. We
will modify existing console appender in logback and then call reset rpc on logback to clear
its status list.

For initial configuration of the controller and startup parameters for yuma, see the
threadpool example: Threadpool configuration using Yuma.

Start the controller and yuma cli client as in the previous example.

There is no need to initialize the configuration module wrapping logback manually, since
it creates a default instance. Therefore you should see the output containing logback
configuration after the execution of get-config source=running command in yuma:

rpc-reply {
 data {
 modules {
 module singleton {
 type logging:logback
 name singleton
 console-appenders {
 threshold-filter ERROR
 name STDOUT
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} [%thread]
 %-5level %logger{36} - %msg%n'
 }
 file-appenders {
 append true
 file-name logs/audit.log
 name audit-file
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} %msg %n'
 }
 loggers {

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Threadpool

OpenDaylight Developer Guide March 4, 2015 master

114

 level WARN
 logger-name org.opendaylight.controller.logging.bridge
 }
 loggers {
 level INFO
 logger-name audit
 appenders audit-file
 }
 loggers {
 level ERROR
 logger-name ROOT
 appenders STDOUT
 appenders opendaylight.log
 }
 loggers {
 level INFO
 logger-name org.opendaylight
 }
 loggers {
 level WARN
 logger-name io.netty
 }
 rolling-appenders {
 append true
 max-file-size 10MB
 file-name logs/opendaylight.log
 name opendaylight.log
 file-name-pattern logs/opendaylight.%d.log.zip
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} [%thread]
 %-5level %logger{35} - %msg%n'
 clean-history-on-start false
 max-history 1
 rolling-policy-type TimeBasedRollingPolicy
 }
 }
 module binding-broker-singleton {
 type binding-impl:binding-broker-impl-singleton
 name binding-broker-singleton
 }
 }
 services {
 service md-sal-binding:binding-broker-osgi-registry {
 type md-sal-binding:binding-broker-osgi-registry
 instance ref_binding-broker-singleton {
 name ref_binding-broker-singleton
 provider /modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']
 }
 }
 }
 }
}

Modifying existing console appender in logback

1. Start edit-config with merge option:

merge /modules/module

1. For Name of the module, enter singleton.

OpenDaylight Developer Guide March 4, 2015 master

115

2. For Type, enter logback.

3. Pick the corresponding case statement with the name logback. We do not want to
modify file-appenders, rolling-appenders and loggers lists, so the answer to questions
from yuma is N (for no):

Filling optional case /modules/module/configuration/logback:
Add optional list 'file-appenders'?
Enter Y for yes, N for no, or C to cancel: [default: Y]

1. As we want to modify console-appenders, the answer to the question from Yuma is Y:

Filling optional case /modules/module/configuration/logback:
Add optional list 'console-appenders'?
Enter Y for yes, N for no, or C to cancel: [default: Y]

1. This will start a new configuration process for console appender and we will fill following
values:

• <encoder-pattern> %date{"yyyy-MM-dd HH:mm:ss.SSS z"} %msg %n

• <threshold-filter> INFO

• <name> STDOUT

2. Answer N to the next question.

Add another list?
Enter Y for yes, N for no, or C to cancel: [default: N]

Notice that we changed the level for threshold-filter for STDOUT console appender from
ERROR to INFO. Now issue a commit command to commit the changed configuration, and
the response from get-config source=running command should look like this:

rpc-reply {
 data {
 modules {
 module singleton {
 type logging:logback
 name singleton
 console-appenders {
 threshold-filter INFO
 name STDOUT
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} [%thread]
 %-5level %logger{36} - %msg%n'
 }
 file-appenders {
 append true
 file-name logs/audit.log
 name audit-file
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} %msg %n'
 }
 loggers {
 level WARN
 logger-name org.opendaylight.controller.logging.bridge
 }
 loggers {

OpenDaylight Developer Guide March 4, 2015 master

116

 level INFO
 logger-name audit
 appenders audit-file
 }
 loggers {
 level ERROR
 logger-name ROOT
 appenders STDOUT
 appenders opendaylight.log
 }
 loggers {
 level INFO
 logger-name org.opendaylight
 }
 loggers {
 level WARN
 logger-name io.netty
 }
 rolling-appenders {
 append true
 max-file-size 10MB
 file-name logs/opendaylight.log
 name opendaylight.log
 file-name-pattern logs/opendaylight.%d.log.zip
 encoder-pattern '%date{"yyyy-MM-dd HH:mm:ss.SSS z"} [%thread]
 %-5level %logger{35} - %msg%n'
 clean-history-on-start false
 max-history 1
 rolling-policy-type TimeBasedRollingPolicy
 }
 }
 module binding-broker-singleton {
 type binding-impl:binding-broker-impl-singleton
 name binding-broker-singleton
 }
 }
 services {
 service md-sal-binding:binding-broker-osgi-registry {
 type md-sal-binding:binding-broker-osgi-registry
 instance ref_binding-broker-singleton {
 name ref_binding-broker-singleton
 provider /modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']
 }
 }
 }
 }
}

Invoking RPCs

Invoking Reset RPC on logback The configuration module for logback exposes some
information about its current state(list of logback status messages). This information can be
accessed using get netconf operation or get command from yuma. Example response after
issuing get command in yuma:

rpc-reply {
 data {
 modules {

OpenDaylight Developer Guide March 4, 2015 master

117

 module singleton {
 type logging:logback
 name singleton
 status {
 message 'Found resource [configuration/logback.xml] at
[file:/.../controller/opendaylight/distribution/opendaylight/target/
distribution.opendaylight-
osgipackage/opendaylight/configuration/logback.xml]'
 level INFO
 date 2479534352
 }
 status {
 message 'debug attribute not set'
 level INFO
 date 2479534441
 }
 status {
 message 'Will scan for changes in
[[/.../controller/opendaylight/distribution/opendaylight/target/distribution.
opendaylight-
osgipackage/opendaylight/configuration/logback.xml]]
every 60 seconds.'
 level INFO
 date 2479534448
 }
 status {
 message 'Adding ReconfigureOnChangeFilter as a turbo filter'
 level INFO
 date 2479534448
 }
 ...

Logback also exposes an rpc called reset that wipes out the list of logback status messages
and to invoke an rpc with name reset on module named singleton of type logback,
following command needs to be issued in yuma:

reset context-instance="/modules/module[type='logback' and name='singleton']"

After an ok response, issuing get command should produce response with empty logback
status message list:

rpc-reply {
 data {
 modules {
 module singleton {
 type logging:logback
 name singleton
 }
 }
 }
}

This response confirms successful execution of the reset rpc on logback.

Invoking shutdown RPC This command entered in yuma will shut down the server. If all
bundles do not stop correctly within 10 seconds, it will force the process to exit.

shutdown context-instance="/modules/module[type='shutdown' and name=
'shutdown']",input-secret="",max-wait-time="10000",reason="reason"

OpenDaylight Developer Guide March 4, 2015 master

118

OpenDaylight Controller Configuration: Logback
Examples

Logback Configuration Example
The Logback logger configuration is part of the config subsystem. This module allows
changes to the Logback configuration at runtime. It is used here as an example to
demonstrate the YANG to Java code generator and to show how the configuration
transaction works.

Java code generation
The logging configuration YANG module definition can be found in the config-
logging.yang file. The code is generated by the yang-maven-plugin and yang-jmx-
generator-plugin. The output java files are located as defined in the plugin configuration,
where additional configuration parameters can be set. The logback module is defined as
identity, with the base "config:module-type"; it does not provide or depend on any service
interface.

identity logback {
 description
 "Actual state of logback configuration.";
 base config:module-type;
 config:java-name-prefix Logback;
}

The next logback module attributes are defined in the "/config:modules/config:module/
config:configuration" augment as the snippet below shows.

augment "/config:modules/config:module/config:configuration" {
 case logback {
 when "/config:modules/config:module/config:type = 'logback'";

 list console-appenders {

 leaf encoder-pattern {
 type string;
 mandatory true;
 }

 leaf threshold-filter {
 type string;
 default 'ALL';
 }

 leaf name {
 type string;
 mandatory true;
 }
 config:java-name-prefix ConsoleAppenderTO;
 }
 ...

Now LogbackModule and LogbackModuleFactory can be generated. In fact, three more
java files related to this module will be generated. By the augment definition, TypeObjects

OpenDaylight Developer Guide March 4, 2015 master

119

too are generated (that is to say, ConsoleAppenderTO). They are regular java classes with
getters and setters for arguments defined as leaves.

• LogbackModuleMXBean is the interface containing getters and setters for attributes
defined in the configuration augment.

• AbstractLogbackModule is the abstract java class, which implements Module,
RuntimeBeanRegistratorAwareModule, and LogbackModuleMXBean. It contains almost
all functionality, except validate and createInstance methods.

• AbstractLogbackModuleFactory is the abstract java class responsible for creating module
instances. It implements the ModuleFactory interface.

• LogbackModule class extends AbstractLogbackModule. It is located in a different place
(source/main/java) and can be modified by the user, so that the abstract method is
implemented and the validate method is overridden.

• LogbackModuleFactory class extends AbstractLogbackModuleFactory and overrides its
instantiateModule methods. Next, the runtime bean is defined in the "/config:modules/
config:module/config:state" augment.

augment "/config:modules/config:module/config:state" {
 case logback {
 when "/config:modules/config:module/config:type = 'logback'";

 rpcx:rpc-context-instance "logback-rpc";

 list status {
 config:java-name-prefix StatusTO;

 leaf level {
 type string;
 }

 leaf message {
 type string;
 }

 leaf date {
 type uint32;
 }
 }
 }
}

• The Generator plugin creates another set of java files.

• LogbackRuntimeMXBean is the interface extending RuntimeBean. It contains the getter
method for the argument defined in the augment.

• LogbackRuntimeRegistrator class serves as the registrator for runtime beans.

• LogbackRuntimeRegistration class serves as the registration ticket. An instance is
returned after registration.

The Logback config also defines logback-rpc with the reset method. It is also defined in the
state augment, owing to the context.

OpenDaylight Developer Guide March 4, 2015 master

120

identity logback-rpc;
rpc reset {
 input {
 uses rpcx:rpc-context-ref {
 refine context-instance {
 rpcx:rpc-context-instance logback-rpc;
 }
 }
 }
}

The Reset method is defined in the LogbackRuntimeMXBean interface.

Logback configuration: Jolokia

To create configuration on the running OSGi server: Jolokia (http://www.jolokia.org/) is
used as a JMX-HTTP bridge, which listens at http://localhost:8080/controller/nb/v2/jolokia
and curl to request over HTTP.

1. Start the controller. Find more here: https://wiki.opendaylight.org/view/
OpenDaylight_Controller:Pulling,_Hacking,_and_Pushing_the_Code_from_the_CLI

2. Request Jolokia:

curl http://localhost:8080/controller/nb/v2/jolokia --user admin:admin

The response must resemble the following:

{
 "timestamp": 1382425537,
 "status": 200,
 "request": {
 "type": "version"
 },
 "value": {
 "protocol": "7.0",
 "agent": "1.1.1",
 "info": {
 "product": "equinox",
 "vendor": "Eclipse",
 "version": "3.8.1.v20120830-144521"
 }
 }
}

Jolokia is working. To configure Logback, first, create a configuration transaction.
ConfigResgistryModule offers the operation beginConfig(), and to invoke it:

curl -X POST -H "Content-Type: application/json" -d '{"type":"exec",
"mbean":"org.opendaylight.controller:type=ConfigRegistry","arguments":[],
"operation":"beginConfig"}' http://localhost:8080/controller/nb/v2/jolokia --
user admin:admin

The configuration transaction was created. The response received:

{
 "timestamp": 1383034210,
 "status": 200,

http://www.jolokia.org/
http://localhost:8080/controller/nb/v2/jolokia
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Pulling,_Hacking,_and_Pushing_the_Code_from_the_CLI
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Pulling,_Hacking,_and_Pushing_the_Code_from_the_CLI

OpenDaylight Developer Guide March 4, 2015 master

121

 "request": {
 "operation": "beginConfig",
 "mbean": "org.opendaylight.controller:type=ConfigRegistry",
 "type": "exec"
 },
 "value": {
 "objectName": "org.opendaylight.controller:TransactionName=
ConfigTransaction-1-2,type=ConfigTransaction"
 }
}

At this stage, the transaction can be aborted, but we want to create the module bean to
be configured. In the created ConfigTransaction call createModule method, the module
identifier is logback, and the name must be singleton as only one instance of the Logback
configuration is needed.

curl -X POST -H "Content-Type: application/json" -d '{"type":"exec",
"mbean":"org.opendaylight.controller:TransactionName=ConfigTransaction-1-2,
type=ConfigTransaction","arguments":["logback","singleton"],
"operation":"createModule"}' http://localhost:8080/controller/nb/v2/jolokia --
user admin:admin

The LogbackModule bean was created. The response returned:

{
 "timestamp": 1383034580,
 "status": 200,
 "request": {
 "operation": "createModule",
 "mbean": "org.opendaylight.controller:TransactionName=
ConfigTransaction-1-2,type=ConfigTransaction",
 "arguments": [
 "logback",
 "singleton"
],
 "type": "exec"
 },
 "value": {
 "objectName": "org.opendaylight.controller:TransactionName=
ConfigTransaction-1-2,instanceName=singleton,moduleFactoryName=logback,type=
Module"
 }
}

• The configuration bean attributes are set to values obtained from the loggers
configuration, with which the server was started. To see attributes, request:

curl -X POST -H "Content-Type: application/json" -d '{"type":"read",
 "mbean":"org.opendaylight.controller:instanceName=singleton,TransactionName=
ConfigTransaction-1-2,type=Module,moduleFactoryName=logback"}' http://
localhost:8080/controller/nb/v2/jolokia --user admin:admin

In the response body, the value contains all attributes (CompositeData) and its nested
attribute values. * Now, the proposed configuration can be committed.

curl -X POST -H "Content-Type: application/json" -d '{"type":"exec",
"mbean":"org.opendaylight.controller:type=ConfigRegistry","arguments":
["org.opendaylight.controller:instanceName=singleton,TransactionName=
ConfigTransaction-1-2,type=Module,moduleFactoryName=logback"],

OpenDaylight Developer Guide March 4, 2015 master

122

"operation":"commitConfig"}' http://localhost:8080/controller/nb/v2/jolokia --
user admin:admin

The configuration was successfully validated and committed, and the module instance
created.

{
 "timestamp": 1383034793,
 "status": 200,
 "request": {
 "operation": "commitConfig",
 "mbean": "org.opendaylight.controller:type=ConfigRegistry",
 "arguments": [
 "org.opendaylight.controller:instanceName=singleton,
TransactionName=ConfigTransaction-1-2,type=Module,moduleFactoryName=logback"
],
 "type": "exec"
 },
 "value": {
 "newInstances": [
 {
 "objectName": "org.opendaylight.controller:instanceName=
singleton,moduleFactoryName=logback,type=Module"
 }
],
 "reusedInstances": [],
 "recreatedInstances": []
 }
}

• The runtime bean was registered, and can provide the status information of the
configuration and rpc operation reset. To see the status, try requesting:

curl -X POST -H "Content-Type: application/json" -d '{"type":"read",
"mbean":"org.opendaylight.controller:instanceName=singleton,type=RuntimeBean,
moduleFactoryName=logback"}' http://localhost:8080/controller/nb/v2/jolokia --
user admin:admin

The entire logback status is in the response body.

• To invoke the rpc method reset:

curl -X POST -H "Content-Type: application/json" -d '{"type":"exec",
"mbean":"org.opendaylight.controller:instanceName=singleton,type=RuntimeBean,
moduleFactoryName=logback",
"operation":"reset","arguments":[]}' http://localhost:8080/controller/nb/v2/
jolokia --user admin:admin

The answer:

{
 "timestamp": 1383035001,
 "status": 200,
 "request": {
 "operation": "reset",
 "mbean": "org.opendaylight.controller:instanceName=singleton,
moduleFactoryName=logback,type=RuntimeBean",
 "type": "exec"
 },
 "value": null

OpenDaylight Developer Guide March 4, 2015 master

123

}

Now, the runtime bean status attribute will be empty:

{
 "timestamp": 1383035126,
 "status": 200,
 "request": {
 "mbean": "org.opendaylight.controller:instanceName=singleton,
moduleFactoryName=logback,type=RuntimeBean",
 "type": "read"
 },
 "value": {
 "StatusTO": []
 }
}

Logback configuration: Netconf

In this case, NETCONF RPCs are used to configure logback. The Netconf server listens at
port 8383. To communicate over TCP, telnet is used. More about NETCONF is available at:
http://tools.ietf.org/html/rfc6241. Netconf implementation is a part of the Controller -
netconf-subsystem. The RPCs of Netconf are XML, and the operations are mapped to JMX
operations. * A server re-start is required. The procedure is the same as above. * Open a
terminal and connect to the server:

telnet localhost 8383

A Hello message received from the server contains the server capabilities and session-id. To
establish connection to the client,send a hello message:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 </capabilities>
</hello>
]]>]]>

• With the connection created, the client and server can communicate. To see the running
modules and services, send an RPC to the server:

<rpc id="a" a="64" xmlnx="a:b:c:d" xmlns=
"urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
</rpc>
]]>]]>

• To configure logback, create a configuration transaction, and create a configuration
module. It can be done in one step (in client point of view):

<rpc message-id="a" a="64" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>

http://tools.ietf.org/html/rfc6241

OpenDaylight Developer Guide March 4, 2015 master

124

 </target>
 <default-operation>merge</default-operation>
 <config>
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <name>singleton</name>
 <type xmlns:logging=
"urn:opendaylight:params:xml:ns:yang:controller:logback:config">
 logging:logback
 </type>
 </module>
 </modules>
 </config>
 </edit-config>
</rpc>
]]>]]>

If the configuration worked, the client receives a positive response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<ok/>
</rpc-reply>
]]>]]>

• The Logback configuration bean attributes contain values loaded from the running
Logback configuration. Send a request to the server with an RPC:

<rpc id="a" a="64" xmlnx="a:b:c:d" xmlns=
"urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <get-config>
 <source>
 <candidate/>
 </source>
 </get-config>
</rpc>
]]>]]>

• The reply includes the entire configuration that started the server. Assume that we want
to change the RollingFileAppender named opendaylight.log attributes - maxFileSize,
filename, and maxHistory. (attribute of TimeBasedRollingPolicy). The proposed
configuration:

<rpc message-id="a" a="64" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>merge</default-operation>
 <config>
 <modules xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <name>singleton</name>
 <type xmlns:logging=
"urn:opendaylight:params:xml:ns:yang:controller:logback:config">
 logging:logback
 </type>
 <rolling-appenders xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:logback:config">

OpenDaylight Developer Guide March 4, 2015 master

125

 <append>true</append>
 <max-file-size>5MB</max-file-size>
 <file-name>logs/opendaylight-new.log</file-name>
 <name>opendaylight.log</name>
 <file-name-pattern>logs/opendaylight.%d.log.zip</file-name-pattern>
 <encoder-pattern>%date{"yyyy-MM-dd HH:mm:ss.SSS z"} [%thread] %-5level
 %logger{35} - %msg%n</encoder-pattern>
 <clean-history-on-start>false</clean-history-on-start>
 <max-history>7</max-history>
 <rolling-policy-type>TimeBasedRollingPolicy</rolling-policy-type>
 </rolling-appenders>
 </module>
 </modules>
 </config>
 </edit-config>
</rpc>
]]>]]>

This configuration is merged with the proposed module configuration. If it passes the
validation process successfully, an "ok" reply is received.

• The configuration bean is ready to be committed:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <commit></commit>
</rpc>
]]>]]>

If successful, the ok message is received obtained, and the logback configuration is set. To
verify, look into the logs directory to find a new log file named opendaylight-new.log

• Correctly close the session with the session-id:

<rpc message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close-session xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"/>
</rpc>
]]>]]>

Logback configuration - Yuma

For a yangcli-pro example, see the user guide.

Opendaylight Controller: Configuration
Logback.xml

Logging in ODL container is done by means of Logback. Comprehensive documentation is
available at http://logback.qos.ch/documentation.html.

By default, logging messages are appended to stdout of the java process and to file logs/
opendaylight.log. When debugging a problem it might be useful to increase logging level:

<logger name="org.opendaylight.controller" level="DEBUG"/>

Logger tags can be appended under root node <configuration/>. Name of logger is used
to select all loggers to which specified rules should apply. Loggers are usually named after

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:User_guide
http://logback.qos.ch/
http://logback.qos.ch/documentation.html

OpenDaylight Developer Guide March 4, 2015 master

126

class in which they reside. The example above matches all loggers in controller - they all are
starting with org.opendaylight.controller . There are 5 logging levels: TRACE,DEBUG,INFO,
WARN, ERROR. Additionally one can specify which appenders should be used for given
loggers. This might be helpful to redirect certain log messages to another file or send them
to syslog or over SMTP. == OpenDaylight Controller Configuration: Examples of Threadpool

Configuration example of thread pools using
yangcli-pro

For a yangcli-pro example, see the Examples User Guide.

Configuration example of thread pools using
telnet

It is also possible to manipulate the configuration without the yuma cli. With just a telnet or
ssh connection, it is possible to send the plain text containing netconf rpcs encoded in the
xml format and achieve the same results as with yuma cli.

This example reproduces the configuration of a threadpool and a threadfactory from the
previous example using just a telnet connection. We can also use ssh connection, with the
netconf rpcs sending procedure remaining the same. For detailed information about initial
configuration for the controller as well as the configuration process, see the example using
yuma cli.

Connecting to plaintext TCP socket
1. Open a telnet connection:

telnet 127.0.0.1 8383

1. Open an ssh connection:

ssh netconf@127.0.0.1 -p 1830 -s netconf

The password for user netconf is : netconf, and the separator for the messages is:

]]>]]>

Every message needs end with these 6 characters.

The server sends a hello message:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:capability:exi:1.0</capability>
<capability>urn:opendaylight:l2:types?module=opendaylight-l2-types&
amp;revision=2013-08-27</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:netty:threadgroup?
module=threadgroup&revision=2013-11-07</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding?
module=opendaylight-md-sal-binding&revision=2013-10-28</capability>

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:User_guide

OpenDaylight Developer Guide March 4, 2015 master

127

<capability>urn:opendaylight:params:xml:ns:yang:controller:threadpool?module=
threadpool&revision=2013-04-09</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:config?module=
config&revision=2013-04-05</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring?module=ietf-
netconf-monitoring&revision=2010-10-04</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:netty:eventexecutor?
module=netty-event-executor&revision=2013-11-12</capability>
<capability>urn:ietf:params:xml:ns:yang:rpc-context?module=rpc-context&
amp;revision=2013-06-17</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl?
module=opendaylight-sal-binding-broker-impl&revision=2013-10-28</
capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:netty:timer?module=
netty-timer&revision=2013-11-19</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-
types&revision=2010-09-24</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</
capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl?
module=threadpool-impl&revision=2013-04-05</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-yang-types?module=ietf-yang-
types&revision=2010-09-24</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:logback:config?
module=config-logging&revision=2013-07-16</capability>
<capability>urn:opendaylight:params:xml:ns:yang:iana?module=iana&revision=
2013-08-16</capability>
<capability>urn:opendaylight:yang:extension:yang-ext?module=yang-ext&
amp;revision=2013-07-09</capability>
<capability>urn:opendaylight:params:xml:ns:yang:controller:netty?module=netty&
amp;revision=2013-11-19</capability>
<capability>http://netconfcentral.org/ns/toaster?module=toaster&revision=
2009-11-20</capability>
<capability>urn:opendaylight:params:xml:ns:yang:ieee754?module=ieee754&
amp;revision=2013-08-19</capability>
<capability>urn:opendaylight:params:xml:ns:yang:nps-concepts?module=nps-
concepts&revision=2013-09-30</capability>
</capabilities>

<session-id>4</session-id>
</hello>
]]>]]>

1. As the client, you must respond with a hello message:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 </capabilities>
</hello>
]]>]]>

Although there is no response to the hello message, the session is already established.

Configuring threadfactory
1. The following is the Xml equivalent to get-config source=running:

OpenDaylight Developer Guide March 4, 2015 master

128

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
</rpc>
]]>]]>

The response containing the current configuration:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <data>
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:binding-
broker-impl-singleton</type>
 <name>binding-broker-singleton</name>
 </module>
 </modules>
 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-
broker-osgi-registry</type>
 <instance>
 <name>ref_binding-broker-singleton</name>
 <provider>/modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']</provider>
 </instance>
 </service>
 </services>
 </data>
</rpc-reply>]]>]]>

1. To create an instance of threadfactory-naming with the name threadfactory-bgp, and
the attribute name-prefix set to bgp, send the message:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>merge</default-operation>
 <config>
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation=
"merge">
 <name>threadfactory-bgp</name>
 <type xmlns:th-java=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">th-
java:threadfactory-naming</type>
 <name-prefix xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">bgp</name-
prefix>
 </module>
 </modules>
 </config>
 </edit-config>

OpenDaylight Developer Guide March 4, 2015 master

129

</rpc>]]>]]>

1. To commit the threadfactory instance, send a commit message:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
</rpc>]]>]]>

The Netconf endpoint should respond with ok to edit-config, as well as the commit
message:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <ok/>
</rpc-reply>]]>]]>

1. The response to the get-config message (the same as the first message sent in this
example) should contain the commited instance of threadfactory-naming:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <data>
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:impl">prefix:binding-
broker-impl-singleton</type>
 <name>binding-broker-singleton</name>
 </module>

 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">prefix:threadfactory-
naming</type>
 <name>threadfactory-bgp</name>
 <name-prefix xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">bgp</name-
prefix>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadfactory</
type>
 <instance>
 <name>ref_threadfactory-bgp</name>
 <provider>/modules/module[type='threadfactory-naming'][name=
'threadfactory-bgp']</provider>
 </instance>
 </service>
 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-
broker-osgi-registry</type>
 <instance>
 <name>ref_binding-broker-singleton</name>
 <provider>/modules/module[type='binding-broker-impl-singleton'][name=
'binding-broker-singleton']</provider>
 </instance>

OpenDaylight Developer Guide March 4, 2015 master

130

 </service>
 </services>
 </data>
</rpc-reply>]]>]]>

Configuring fixed threadpool
• To create an instance of threadpool-fixed , with the same configuration and the same

dependency as before, send the following message:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>merge</default-operation>
 <config>
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation=
"merge">
 <name>bgp-threadpool</name>
 <type xmlns:th-java=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">th-
java:threadpool-fixed</type>
 <max-thread-count xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">100</max-
thread-count>
 <threadFactory xmlns=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool:impl">
 <type xmlns:th=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool">th:threadfactory</
type>
 <name>ref_th-bgp</name>
 </threadFactory>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadfactory</
type>
 <instance>
 <name>ref_th-bgp</name>
 <provider>/modules/module[type='threadfactory-naming'][name=
'threadfactory-bgp']</provider>
 </instance>
 </service>
 </services>
 </config>
 </edit-config>
</rpc>]]>]]>

Notice the services tag. If an instance is to be referenced as a dependency by another
module, it needs to be placed under this tag as a service instance with a unique reference
name. Tag provider points to a unique instance that is already present in the config
subsystem, or is created within the current edit-config operation. The tag name contains
the reference name that can be referenced by other modules to create a dependency. In

OpenDaylight Developer Guide March 4, 2015 master

131

this case, a new instance of threadpool uses this reference in its configuration under the
threadFactory tag).

You should get an ok response again, and the configuration subsystem will inject the
dependency into the threadpool. Now you can commit the configuration (ok response
once more) and the process is finished. The config subsystem is now in the same state as it
was at the end of the previous example.

OpenDaylight Controller MD-SAL: Model
reference

A full list of models, with links to the yang, descriptions, JavaDoc and REST APIs,
see the OpenDaylight wiki page here: https://wiki.opendaylight.org/view/
OpenDaylight_Controller:MD-SAL:Model_Reference

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Model_Reference
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Model_Reference

OpenDaylight Developer Guide March 4, 2015 master

132

6. Defense4all

Table of Contents
Defense4All Design .. 132
Defense4All in an ODL Environment .. 133
Framework View ... 134
Application View ... 136
ODL Reps View ... 138
Basic Control Flow ... 141
Configurations and Setup Flow .. 141
Attack Detection Flow ... 142
Attack Mitigation Flow .. 142
Continuity ... 143

Defense4All Design
Defense4All is a security SDN application for detecting and driving mitigation of DoS
and DDoS attacks in different SDN topologies. It realizes anti-DoS in OOP mode for the
ProgrammableFlow SDN environment. Administrators can configure Defense4All to protect
certain networks and servers, known as protected networks or Protected Objects (POs).
Defense4All exploits SDN capabilities to count specified traffic, and installs traffic counting
flows for each protocol of each configured PO in every network location (VTN Vexternals)
through which traffic of the subject PO flows. Defense4All then monitors traffic of all
configured POs, summarizing readings, rates, and averages from all relevant network
locations. If it detects a deviation from normal learned traffic behavior in a protocol (such
as TCP, UDP, ICMP, or the rest of the traffic) of a particular PO, Defense4All declares an
attack against that protocol in the subject PO. The Defense4All learning period has a
minimum of one week from the installation of the counting flows in which Defense4All
does not detect attacks.

To mitigate a detected attack, Defense4All performs the following procedure:

1. Validates that the DefensePro device is alive and selects a live connection to it (if
DefensePro is not alive or does not have a live connection from a PFS, then no traffic
diversion is performed. For more information, refer to the Continuity section.

2. Configures DefensePro with a security policy and normal rates of the attacked traffic.
The latter speeds up DefensePro’s efficient mitigation of the attack.

3. Starts monitoring and logging syslogs arriving from DefensePro for the subject traffic.
As long as it continues receiving syslog attack notifications from DefensePro regarding
this attack, Defense4All continues attack mitigation through traffic diversion even if the
Vexternal FlowFilter counters do not indicate any more attacks.

4. Maps the selected physical DefensePro connection to the relevant VTN by creating a pair
of Vexternals and mapping them to the selected pair of physical PFS ports connected to
DefensePro. Automatically learns and preserves VLAN tagging if it exists. If Defense4All
has already created and mapped a pair of Vexternals with the same VLAN in the VTN,

OpenDaylight Developer Guide March 4, 2015 master

133

then the same pair is also reused for diversion of the new traffic (rather than creating
new Vexternals for the same VTN and VLAN).

5. Installs higher priority flow filter entries in every north Vexternal through which the
attacked traffic flows in order to redirect traffic to the “north DP-In Vexternal”. It also
selects one of the live north interfaces of the Vbr connected to all those Vexternals
(there can be exactly one Vbr with the same VLAN). Defense4All re-injects traffic
from the “DP-Out Vexternal” to the selected interface of the Vbr. When Defense4All
decides that the attack is over (no indication from either PFC FlowFilter counters or from
DefensePro) it reverts the previous actions: it stops monitoring for DefensePro syslogs
about the subject traffic, it removes the traffic diversion FlowFilters, removes the “DP-
In and DP-Out Vexternals” (if this is the last attack in this VTN and VLAN), and removes
the security configuration from DefensePro. Defense4All then returns to peacetime
monitoring.

In this version, Defense4All runs as a single instance (non-clustered), but integrates the
following main fault tolerance features:

• Runs as a Linux service that is automatically restarted should it fail.

• State entirely persisted in stable storage, and upon restart Defense4All obtains the latest
state.

• Carries a health tracker with restart and reset capabilities to overcome certain logical and
aging bugs.

Defense4All monitors the status of DefensePro, switch connections to DefensePro, relevant
Vbrs in various VTNs, northbound interfaces of those Vbrs, and north Vexternals and
adjusts, cancels, and (re)initiates attack traffic diversion accordingly.

The following figure illustrates the possible state of any given PO. Radware’s DefensePro
(DP) is an example of an incorporated AMS. image::Pn_possible_states.jpg[Workflow of
Defense4All Attack Mitigation]

Defense4All in an ODL Environment
Defense4All comprises of an SDN application framework and the Defense4All application
itself, packaged as a single entity. Application integration into the framework is pluggable,
so any other SDN application can benefit from the common framework services.

The main advantages of this architecture are:

• Faster application development and changes - The Framework contains common code
for multiple applications, complex elements (such as clustering and repository services)
are implemented once for the benefit of any application.

• Faster, flexible deployment in different environments, form-factors, satisfying different
NFRs – The Framework masks from SDN application factors such as required data
survivability, scale and elasticity, availability, security.

• Enhanced robustness - Complex framework code is implemented and tested once,
cleaner separation of concerns leads to more stable code, and the framework can
increase robustness proactively with no additional code in the application logic (such as
periodic application recycle).

OpenDaylight Developer Guide March 4, 2015 master

134

• Unified management of common aspects – Common look and feel.

Framework View
The following figure illustrates the framework view. image::800px-
Framework_view.jpg[Framework View]

The framework contains the following elements:

FrameworkMain – The Framework root point contains references to all Framework
modules and global repositories, as well as the roots of deployed SDN applications (in the
current version, the framework can accommodate only one application). This is also the
point to start, stop, or reset the framework (along with its hosted application) Web server,
Jetty Web server running the Jersey RESTful Web services framework, with Jackson parser
for JSON encoded parameters. The REST Web server runs a servlet for the framework and
another servlet for each deployed application (currently only one). All REST and CLI APIs
are supported through this REST Web server.

FrameworkRestService – A set of classes constituting the framework servlet that responds
to framework REST requests (get latest Flight Recorder records, perform factory reset, and
so on). The FrameworkRestService invokes control and configuration methods against the
FrameworkMgmtPoint, and for reporting it retrieves information directly from the relevant
repositories. For flight recordings, it invokes methods against the FlightRecorder.

FrameworkMgmtPoint – The point to drive control and configuration commands (start,
stop, reset, set address of the hosting machine, and so on). FrameworkMgmtPoint in turn
invokes methods against other relevant modules in the correct order. It forwards lifecycle
requests (start, stop, reset) directly to FrameworkMain to drive them in the correct order.

Defense4All Application – The AppRoot object that should be implemented/extended
by any SDN application (in this case, Defense4All). SDN applications do not have “main,”
and their lifecycle (start, stop, reset) is managed by the framework operating against the
application root object, which then drives all lifecycle operations in the application. This
module also contains references back to the framework, allowing the application to use
framework services (such as create a Repo and log a flight record) and common utilities.

Common classes and Utilities – A library of convenient classes and utilities from which any
framework or SDN application module can benefit. Examples include wrapped threading
services (for asynchronous, periodic, or background execution), short hash of a string, and
confirmation by user.

Repository services – One of the key elements in the framework philosophy is decoupling
the compute state from the compute logic. All durable states should be stored in a set
of repositories that can be then replicated, cached, distributed under the covers, with no
awareness of the compute logic (framework or application). Repository services comprise
the RepoFactory and Repo or its annotations-friendly equivalent – the EntityManager.
The RepoFactory is responsible for establishing connectivity with the underlying repository
plugged-in service, instantiate new requested repositories, and return references to existing
ones. The chosen underlying repository service is Hector Client over Cassandra NoSQL DB.
Repo presents an abstraction of a single DB table. It enables reading the whole table, only
table keys (tables are indexed by only the single primary key), records or single cells, as
well as writing records or single cells with controlled eagerness. A sub-record (with only a
portion of cells) may be written. In this case, the displayed cells override existing ones in the

OpenDaylight Developer Guide March 4, 2015 master

135

repository. Other cells in the repository remain unchanged. In contrast to a relational DB,
in which all columns must be specified up-front (in a schema design), Repo leverages the
underlying Cassandra support to contain rows (records) in the same table with different
sets of columns, some of which may not being even defined up-front. Furthermore, cells
with new columns can be added or removed on the fly. RepoFactory and Repo (as well as
its Entity Manager annotation-friendly equivalent) constitute a convenient library targeted
to framework and SDN applications goals on top of the Hector client library communicating
with Cassandra Repository cluster. Scaling the Cassandra cluster, distributing data shards
across Cassandra cluster members, and configuring read/write eagerness and consistency
are for the most part encapsulated in this layer.

Logging and Flight Recorder services – The logging service uses Log4J library to log
error, warning, trace, or informational messages. These logs are mainly for Defense4All
developers. Administrators can obtain additional details about failures from the error log.
FlightRecorder records all flight records recorded by any Defense4All module, including
information received from external network elements such as ODC and AMSs. It then
allows a user or administrator to obtain that information through the REST API or the
CLI. Flight records can be filtered by categories (zero or more can be specified) and by
time ranges. FlightRecorder stores all flight records in its own Repo (with another repo
holding time ranges for efficient time ranges retrieval from the records repo). Because all
flight records are stored in Cassandra, the number of flight records Defense4All can keep
is limited only by the size of the underlying persistent storage capacity of all Cassandra
servers, and so even on a single Cassandra instance, months of historical information can be
kept.

HealthTracker – The point to hold the aggregated runtime health of Defense4All and
to act in response to severe deteriorations. Any module, upon sensing unexpected
and/or faulty behavior in it or in any other module can record a “health issue” in the
HealthTracker, providing health issue significance. This is instead of directly triggering a
Defense4All termination. This means that numerous health issues in a short period with
high aggregated significance are likely to indicate a significant wide-spread Defense4All
problem, but sporadic and/or intermittent operational “hiccups” can be neglected,
even if Defense4All remains less than 100% operational (the administrator can always
reset it to fully recover). As a result, every non-permanent health issue has a gradually
diminished effect over time. If Defense4Al health deteriorates below a predefined
threshold, HealthTracker triggers responsive actions depending on the nature of the health
issues. A restart can heal transient problems, and so the HealthTracker triggers Defense4All
termination (running as a Linux service, Defense4All is automatically restarted). To recover
from more permanent problems, HealthTracker may additionally trigger a Defense4All
reset. If this does not help, the next time the HealthTracker attempts a more severe reset.
As a last resort, the administrator can be advised to perform a factory reset.

ClusterMgr – Currently not implemented. This module is responsible for managing a
Defense4All cluster (separate from Cassandra or ODC clusters, modeled as separate tier
clusters). A clustered Defense4All carries improved high availability and scalability. Any
module in the Defense4All framework or application can register with ClusterMgr for a
clustered operation, specifying whether its functionality should be carried out by a single
or by multiple/all active instances (running on different Defense4All cluster members).
When cluster membership changes, ClusterMgr notifies each instance in each module about
its role in the clustered operation of that module. If there is a single active instance, that
instance is notified of its role in the cluster, while all other instances are notified that they
are in standby mode. If there are multiple active instances, each active instance is notified

OpenDaylight Developer Guide March 4, 2015 master

136

about the number of active instances and its logical enumeration in that range. All states
are stored in a globally accessible and shared repository, so any instance of a module is
stateless, and can perform any role after every membership change. For example, following
membership change N, an instance can be enumerated as 2 out of 7, as a result performing
the relevant portion of the work. At membership change N+1, the same instance can be
enumerated 5 out of 6, and perform the work portion allocated for 5 and not for 2. Peer
messaging services are skipped which the ClusterMgr can provide for a more coordinated
cross-instance operation.

The Defense4All application is highly pluggable. It can accommodate different attack
detection mechanisms, different attack mitigation drivers, and drivers (called reps
[representative]) to different versions of the ODC and different AMSs. The Defense4All
application comprises “core” modules and “pluggable” modules implementing well-defined
Defense4All application APIs.

Application View
The following figure illustrates the application view. image::800px-
D4a_application_view.jpg[Application View]

The following is a description of the Defense4All application modules:

DFAppRoot – The root module of the Defense4All application. The Defense4All application
does not have “main,” and its lifecycle (start, stop, reset) is managed by the Framework
operating against this module, which in turn drives all lifecycle operations in the
Defense4All application. DFAppRoot also contains references to all Defense4All application
modules (core and pluggable), global repositories, and references back to the framework,
allowing the Defense4All application modules to use framework services (such as create a
Repo and log a flight record) and common utilities.

DFRestService – A set of classes constituting the Defense4All application servlet that
responds to Defense4All application REST requests. The DFRestService invokes control and
configuration methods against the DFMgmtPoint, and for reporting it retrieves information
directly from the relevant repositories. For flight recordings, it invokes methods against the
FlightRecorder.

DFMgmtPoint – The point to drive control and configuration commands (such as addams
and addpn). DFMgmtPoint in turn invokes methods against other relevant modules in the
right order.

ODL Reps – A pluggable module-set for different versions of the ODC. Comprises two
functions in two sub-modules: stats collection for, and traffic diversion of, relevant traffic.
These two sub-modules adhere to StatsCollectionRep DvsnRep APIs. ODL Reps is detailed in
Figure 6 and the description that follows it.

SDNStatsCollector – Responsible for setting “counters” for every PN at specified network
locations (physical or logical). A counter is a set of OpenFlow flow entries in ODC-enabled
network switches and routers. The SDNStatsCollector periodically collects statistics from
those counters and feeds them to the SDNBasedDetectionMgr (see the description below).
The module uses the SDNStatsCollectionRep to both set the counters and read latest
statistics from those counters. A stat report consists of read time, counter specification, PN
label, and a list of trafficData information, where each trafficData element contains the
latest bytes and packet values for flow entries configured for <protocol,port,direction> in

OpenDaylight Developer Guide March 4, 2015 master

137

the counter location. The protocol can be {tcp,udp,icmp,other ip}, the port is any Layer 4
port, and the direction can be {inbound, outbound}.

SDNBasedDetectionMgr – A container for pluggable SDN-based detectors. It feeds
stat reports received from the SDNStatsCollector to plugged-in SDN based detectors. It
also feeds all SDN based detectors notifications from the AttackDecisionPoint (see the
description below) about ended attacks (so as to allow reset of detection mechanisms).

RateBasedDetector sub-module – This detector learns for each PN its normal traffic
behavior over time, and notifies AttackDecisionPoint (see the description below) when it
detects traffic anomalies. For each protocol {TCP, UDP, ICMP, other IPs} of each PN, the
RateBasedDetector maintains latest rates and exponential moving averages (baselines) of
bytes and packets, as well as last reading time. The detector maintains those values both
for each counter as well as the aggregation of all counters for each PN. The organization
at two levels of calculations (counter and PN aggregate) allows for better scalability
(such as working with clustered ODCs, where each instance is responsible for obtaining
statistics from a portion of network switches, and bypassing the ODC single instance
image API). Such organizations also enable a more precise stats collection (avoiding the
difficulty of collecting all stats during a very small time interval). Stats are processed at
the counter level, and periodically aggregated at the PN level. Continuous detections of
traffic anomalies cause the RateBasedDetector to notify AttackDecisionPoint about attack
detection. Then, absence of anomalies for some period of time causes the detector to
stop notifying the AttackDecisionPoint about attack detection. The detector specifies
a detection duration within which the detection is valid. After that time, the detection
expires but can be “prolonged” with another notification about the same attack.

AttackDecisionPoint – This module is responsible for maintaining attack lifecycles.
It can receive attack detections from multiple detectors. Defense4All supports the
RateBasedDetector, external detectors (scheduled for future versions), and AMS-based
detector reference implementation (over Radware’s DefensePro). In the current version,
AttackDecisionPoint fully honors each detection (max detector confidence and max
detection confidence). It declares a new attack for every detection of a newly attacked
traffic (PN, protocol, and port), and adds more detections for existing (already declared)
attacks. The module periodically checks the statuses of all attacks. As long as there is at
least one unexpired detection (each detection has an expiration time), the attack is kept
declared. If all detections are expired for a given attack the AttackDecisionPoint declares
the attack has ended. The module notifies the MitigationMgr (see description below) to
start mitigating any new declared attack. It notifies the MitigationMgr to stop mitigating
ended attacks, and also notifies the detectionMgr to reset stats calculations for traffic on
which an attack has just ended.

MitigationMgr - A container for pluggable mitigation drivers. The MitigationMgr
maintains the lifecycle of all mitigations as a result of mitigation notifications from
AttackDecisionPoint. It holds a pre-ordered list of the MitigationDriver sub-modules,
and attempts to satisfy each mitigation in that order. If MitigationDriveri indicates to
MitigationMgr that it does not mitigate a mitigation (because of per PN preferences,
unavailability of AMS resources, network problems, and so on) MitigationMgr will attempt
mitigation by MitigationDriveri+1. If none of the plugged-in MitigationDrivers handle
mitigation, it remains at the status ‘not-mitigated.’

MitigationDriverLocal – This mitigation driver is responsible for driving attack mitigations
using AMSs in their sphere of management. When requested to mitigate an attack, this
mitigator performs the following sequence of steps:

OpenDaylight Developer Guide March 4, 2015 master

138

1. Consults with the plugged in DvsnRep (see description below) about topologically
feasible options of diversion for each of the managed AMSs from each of the relevant
network locations. In this version, the diversion is always performed from the location
where the stats counters are installed.

2. The MitigationDriverLocal selects an AMS out of all feasible options (in the first release,
the selection is trivial—it is the first in list).

3. Optionally configures all the AMSs (each diversion source may have a different AMS
associated with it) prior to instructing to divert traffic to each. This is done through the
plugged in AMSRep.

4. MitigationDriverLocal instructs the DvsnRep to divert traffic from each source NetNode
(in this version, NetNode is modeled over an SDN switch) to the AMS associated with
that NetNode. Diversion can be either for inbound traffic only or both for inbound and
outbound traffic.

5. Mitigation driver notifies the AMSBasedDetector to optionally start monitoring the
attack status in all the AMSs, and feed attack detections to the AttackDecisionPoint.

6. In future versions, the MitigationDriverLocal is scheduled to monitor health of all AMSs
and relevant portions of network topologies, re-selecting AMSs should some fail, or
should network topologies changes require that. When mitigation should be ended,
the MitigationDriverLocal notifies AMSBasedDetector to stop monitoring the attack
status for the ended attack, notifies DvsnRep to stop traffic diversions to all AMSs for
this mitigation, and finally notifies the AMSRep to optionally clean all mitigation-related
configuration sets in each relevant AMS.

AMSBasedDetector – This optional module (which can be packaged as part of the
AMSRep) is responsible for monitoring/querying attack mitigation by AMSs. Registering
as a detector, this module can then notify AttackDecisionPoint about attack continuations
and endings. It monitors only specified AMSs and only for specified (attacked) traffic.

AMSRep - A pluggable module for different AMSs. The module adheres to AMSRep APIs.
It can support configuration of all introduced AMSs (permanently or before/after attack
mitigations). It can also receive/query security information (attack statuses), as well as
operational information (health, load). AMSRep module is entirely optional – AMSs can be
configured and monitored externally. In many cases, attacks can continue be monitored
solely via SDN counters. Defense4All contains a reference implementation AMSRep that
communicates with Radware’s DefensePro AMSs.

ODL Reps View
The following figure illustrates the Defense4All application ODL Reps module-set structure.
image::D4a_odl_reps_view.jpg[ODL Reps View]

Different versions of OFC may be represented by different versions of the ODL Reps
module-set. ODLReps comprises two functions: stats collection for, and traffic diversion
of, relevant traffic. Both or either of the functions may be utilized in a given deployment.
As such, they have a common point to communicate with the ODC and hold all general
information for the ODC.

OpenDaylight Developer Guide March 4, 2015 master

139

ODL Reps supports two types of SDN switches: sdn-hybrid, which supports both SDN and
legacy routing, and sdn-native, which supports SDN only routing. Counting traffic on the
sdn-hybrid switch is done by programming a flow entry with the desired traffic selection
criteria and the action “send to normal”, that is, to continue with legacy routing. Counting
traffic on sdn-native switch requires an explicit routing action (which output port to send
the traffic to). Defense4All avoids learning all routing tables by requiring an sdn-native
switch which is more or less a bump-in the wire with respect to traffic routing (that is,
traffic entering port 1 normally exits port 2 and traffic entering port 3 normally exits port
4 and vice versa). Such a switch allows for easy programming of flow entries just to count
traffic or to divert traffic to/from the attached AMS. When Defense4All programs a traffic
counting flow entry with selection criteria that includes port 1, its action is output to port 2,
and similarly with 3 to 4. In future versions, this restriction is scheduled to be lifted.

The following is a description of the sub-modules:

StatsCollectionRep - The module adheres to StatsCollectionRep APIs. Its main tasks are:

• Offer counter placement NetNodes in the network. The NetNodes offered are all
NetNodes defined for a PN. This essentially maps which of SDN switches the traffic of the
given PN flows.

• Add a peacetime counter in selected NetNodes to collect statistics for a given PN.
StatsCollectionRep creates a single counter for a PN in each NetNode. (Overall, a
NetNode can have multiple counters for different PNs; and a PN can have multiple
counters in NetNodes as specified for the given PN). StatsCollectionRep translates the
installation of a counter in a NetNode to programming four flow entries (for TCP,
UDP, ICMP, and the rest of the IPs) for each “north traffic port” in that NetNode port
from which traffic from a client to a protected PN enters the SDN switch. For example,
StatsCollectionRep adds for a given PN 12 flow entries in an SDN switch with three ports
through that PN’s inbound traffic enters the OFS. And, if another NetNode (SDN switch)
was specified to have that PN’s inbound traffic entering it through two ports, then
StatsCollectionRep programs for this PN eight flow entries in that second NetNode.

• Remove a peacetime counter.

• Read latest counter values for a specified counter. StatsCollectionRep returns a vector
of latest bytes and packets counted for each protocol-port in each direction (currently
only “north to south” is supported), along with the time it received the reading from the
ODC.

DvsnRep - The module adheres to DvsnRep APIs. Its main tasks are:

• Return diversion properties from a given NetNode to a given AMS. In this version, an
empty property is returned if such a diversion is topologically feasible (AMS is directly
attached to the SDN switch over which the specified NetNode is modeled. Otherwise no
properties are returned. This leaves room for remote diversions in future versions, and
topological costs to each distant AMS, such as latency, bandwidth reservation, and cost).

• Divert (attacked) traffic from a specified NetNode through an AMS. As such, the new
flow entries take precedence over the peacetime ones. DvsnRep programs flow entries to
divert inbound attacked traffic (or all traffic, if so specified for the PN) from every “north
traffic port” into the AMS “north” port. If “symmetric diversion” (for both inbound

OpenDaylight Developer Guide March 4, 2015 master

140

and returning, outbound traffic) has been specified for that PN, DvsnRep programs
another set of flow entries to divert attacked (or all) traffic from every “south traffic
port” into the AMS “south” port. In an sdn-hybrid switch deployment, DvsnRep adds
a flow entry for inbound traffic that returns from the AMS south port, with the action
sent to normal, and similarly it adds a flow entry for outbound returning traffic from
the AMS north port, with action of also sent to normal. In an SDN-native switch, the
action is to send to the correct output port, however if this scenario the process is more
complex for determining the correct port. North port MAC learning is used to determine
from the source/destination MAC in the packet the correct output port. This scheme of
flow entries works well for TCP, UDP and ICMP attacks. For “other IP” attacks, the flow
entries programming is more complex, and is suppressed here for clarity. The set of flow
entries programmed to divert (but still count) traffic comprises the “attack traffic floor”.
There may be many attack traffic floors, all of which take precedence over the peacetime
stats collection floor (by programming higher priority flow entries). Additional attacks
(except “other IP” attacks, which is a special case, and is suppressed here) are created
with higher priority traffic floors over previously set attack traffic floors. Attacks may fully
or partially “eclipse” earlier attacks (for example, TCP port 80 over TCP, or vice versa), or
be disjointed (such as TCP and UDP). Stats collection is taken from all traffic floors, both
peacetime and attacks. An SDN-based detector aggregates all statistics into overall rates,
thus determining if the attack is still in progress. (Note that eclipsed peacetime counted
traffic may show zero rates, and that counting is complemented by the higher priority
floor counters.)

• End diversion. DvsnRep removes the relevant attack traffic floor (removing all of its
flow entries from the NetNode). Note that this affects neither traffic floors “above”
the removed floor nor the traffic floors “below.” In addition, the SDN-based detector
receives the same aggregated rates from counters of remaining floors, so its operation
also is not affected.

ODLCommon – This module contains all common elements needed to program flow
entries in the ODC. This allows for coherent programming of configured ODCs (in this
version, at most one) by StatsCollectionRep and DvsnRep. For instance ODLCommon
instantiates connectivity with the ODCs, maintains a list of programmed flow entries and
cookies assigned to each. It also maintains references to DFAppRoot and FrameworkMain.
When an sdn-native NetNode is added ODLCommon programs 2 flow entries per each
protected link (pair of input-to-output ports) to transfer traffic between the two ports
(traffic entering north port is routed to south port and vice versa). ODLCommon adds two
more flow entries for each port connecting to an AMS to block returning ARP traffic (so as
to avoid ARP floods if the AMSs are not configured to block them). This “common traffic
floor” flow entries are set with the lowest priority. Their counters are accounted for neither
stats collections nor traffic diversion. When a NetNode is removed, ODLCommon removes
this common traffic floor flow entries.

FlowEntryMgr – This module provides an API to perform actions on flow entries in an
SDN switch managed by an ODC, and retrieves information about all nodes managed by
an ODC. Flow entries actions include adding a specified flow entry in a specified NetNode
(SDN switch/router), removing a flow entry, toggling a flow entry, getting details of a flow
entry, and reading statistics gathered by the flow entry. FlowEntryMgr uses the connector
modules to communicate with the ODC.

Connector – This module provides the basic API calls to communicate with the ODC,
wrapping REST communications. After initializing connection details with a specified ODC,

OpenDaylight Developer Guide March 4, 2015 master

141

the connector allows getting or deleting data from the ODC, as well as posting or putting
data to the ODC.

ODL REST Pojos – This set of Java classes are part of the ODC REST API, specifying the Java
classes of the parameters and the results of interaction with the ODC.

Basic Control Flow
Control flows are logically ordered according to module runtime dependencies, so if
module A depends on module B then module B should be initialized before module A, and
terminate after it. Defense4All application modules depend on most Framework modules,
except WebServer.

Startup — Defense4All initializes all its modules and re-applies previously configured
infrastructure and security set-ups, obtaining them from persistent repositories. At
the end of the Startup process, Defense4All resumes its prior operation. Termination
- restart — Defense4All persists any relevant data into stable storage repositories, and
terminates itself. If the termination is for restart, the automatic restart mechanism restarts
Defense4All. Otherwise (such as upgrading) Defense4All does not automatically restart.
Reset — In this flow, all modules are reset to factory level. This means that all dynamically
obtained data as well as user configurations are deleted

Configurations and Setup Flow
OFC (OpenFlowController = ODC) – When DFMgmtPoint receives from DFRestService
a request to add an OFC, it first records the added OFC in the OFC’s Repo, and then
notifies ODLStatsCollectionRep and ODLDvsnRep, which in turn notify the ODL to initiate
a connection to the added OFC (ODC). ODL instantiates a REST client for communication
with the ODC.

NetNode - Multiple NetNodes can be added. Each NetNode models a switch or similar
network device, along with its traffic ports, protected links, and connections to AMSs.
When DFMgmtPoint receives from DFRestService a request to add a NetNode, it first
records the added NetNode in NetNodes Repo, and then notifies ODLStatsCollectionRep
and ODLDvsnRep, followed by MitigationMgr. ODLStatsCollectionRep and ODLDvsnRep
then notify the ODL, and the ODL installs low priority flow entries to pass traffic between
the protected links’ port pairs. MitigationMgr notifies MitigationDriverLocal, which updates
its NetNode-AMS connectivity groups for consistent assignment of AMSs to diversion from
given NetNodes.

AMS – Multiple AMSs can be added. When DFMgmtPoint receives from DFRestService a
request to add an AMS, it first records the added AMS in the AMS’s Repo, and then notifies
AMSRep. AMSRep can optionally pre-configure protection capabilities in the added AMS,
and start monitoring its health.

PN - Multiple PNs can be added. When DFMgmtPoint receives from DFRestService a request
to add a PN, it first records the added PN in the PN’s Repo, notifies MitigationMgr, and
then finally notifies the DetectionMgr. MitigationMgr notifies MitigationDriverLocal, which
then notifies AMSRep. AMSRep can preconfigure the AMS for this PN, as well its EventMgr
to accept events related to this PN’s traffic. DetectionMgr notifies RateBasedDetector,
which then notifies StatsCollector. StatsCollector queries ODLStatsCollectionRep about

OpenDaylight Developer Guide March 4, 2015 master

142

possible placement of stats collection counters for this PN. ODLStatsCollectionRep
returns all NetNodes configured for this PN (and if none are configured, it returns all
NetNodes currently known to Defense4All). StatsCollector “chooses” the counter locations
option (the only available option in this version). For each of the NetNodes, it then asks
ODLStatsCollectionRep to create a counter for the subject PN. The counter is essentially
a set of flow entries set for the protocols of interest (TCP, UDP, ICMP, and the rest of
the IPs) on each north traffic port. The counter is given a priority and this constitutes
the peacetime traffic floor (to monitor traffic by periodically reading all counter flow
entry traffic count values). Because the PN may be re-introduced at restart or a change in
network topology may require re-calculation of counter locations, it is possible that some/
all counters may already be in place. Only new counters are added. Counters that are no
longer are removed. ODLStatsCollectionRep configures the flow entries according to the
NetNode type. For hybrid NetNodes, the flow entry action is “send to normal” (proceed to
legacy routing), while for native NetNodes, the action is to match the output port (in each
protected link). OdlStatsCollectionRep invokes the ODL to create each specified flow entry.
The latter invokes FlowEntryMgr and Connector to send the request to the ODC.

Attack Detection Flow
Periodically, the StatsCollector requests the ODL StatsCollectionRep to query the ODC for
the latest statistics for each set counter for each configured PN. ODLStatsCollectionRep
invokes FlowEntryMgr to obtain statistics for each flow entry in a counter. The latter
invokes the connector to obtain the desired statistics from the ODC.

ODLStatsCollectionRep aggregates the obtained results in a vector of stats (latest bytes
and packets readings per each protocol) and returns that vector. StatsCollector feeds
each counter stats vector to DetectionMgr, which then forwards the stats vector to the
RateBasedDetector. The RateBasedDetector maintains stats information for every counter
as well as aggregated counter stats for every PN. Stats information includes the time of
previous reading, and for every protocol the latest rates and exponential averages.

The RateBasedDetector checks for significant and prolonged latest rate deviations from
the average, and if such deviations are found in the PN aggregated level, it notifies
the AttackDecisionPoint about attack detection. As long as deviations continue, the
RateBasedDetector continues notifying the AttackDecisionPoint about the detections.
It sets an expiration time for every detection notification, and repeatable notifications
essentially prolong the detection expiration.

AttackDecisionPoint honors all detections. If it has already declared an attack on that
protocol-port, then the AttackDecisionPoint associates the additional detection with
that existing attack. Otherwise, it creates a new attack and notifies the MitigationMgr
to mitigate that attack (as described below). Periodically, AttackDecisionPoint
checks the status of all detections of each live attack. If all detections have expired,
AttackDecisionPoint declares the end of the attack and notifies MitigationMgr to stop
mitigating the attack.

Attack Mitigation Flow
MitigationMgr, upon receiving mitigate notification from yhe AttackDecisionPoint,
attempts to find a plugged-in MitigationDriver to handle the mitigation. Currently, it
requests only its plugged-in MitigationDriverLocal.

OpenDaylight Developer Guide March 4, 2015 master

143

MitigationDriverLocal checks if there are known, live, and available AMSs to which attacked
(or all) traffic can be diverted from NetNodes through which attacked traffic flows. It
selects one of the suitable AMSs and configures it prior to diverting attack traffic to
the selected AMS. For example, MitigationDriverLocal retrieves from Repo the relevant
protocol averages, and configures them in AMS through the AMSRep.

MitigationDriverLocal then requests ODLDvsnRep to divert the attacked PN protocol-port
(or all PN) traffic from each of the NetNodes through which the PN traffic flows to the
selected AMS.

ODLDvsnRep creates a new highest priority traffic-floor (that contains flow entries with
a priority higher than any flow entry in the previously set traffic floors). The traffic floor
contains all flow entries to divert and count traffic from every ingress/northbound
traffic port into the AMS, and back from the AMS to the relevant output (southbound)
ports. Optionally, diversion can be “symmetric” (in both directions), in which case flow
entries are added to divert traffic from southbound ports into the AMS, and back from
the AMS to northbound ports. Note that the StatsCollector treats this added traffic
floor as any other, and passes obtained statistics from this floor to the DetectionMgr/
RateBasedDetector. Because traffic floors are aggregated (in the same NetNode as well as
across NetNodes) for a given PN the combined rates remain the same as prior to diversion.
Just like ODLStatsCollectionRep, ODLDvsnRep also utilizes lower level modules to install the
flow entries in desired NetNodes.

Finally, MitigationDriverLocal notifies AMSRep to optionally start monitoring this attack
and notify the AttackDecisionPoint if the attack continues or new attacks develop. AMSRep
can do that through the AMSBasedDetector module.

If MitigationDriverLocal finds no suitable AMSs, or fails to configure any of its mitigation
steps, it aborts the mitigation attempt, asynchronously notifying MitigationMgr. The
mitigation then remains in status “no-resources.”

When MitigationMgr receives a notification to stop mitigating an attack, it
forwards this notification to the relevant (and currently the only) MitigationDriver,
MitigationDriverLocal. MitigationDriverLocal reverses the actions in at the start of the
mitigation. It notifies AMSRep to stop monitoring for this attack, it cancels diversion for
the attacked traffic, and finally notifies AMSRep to optionally remove pre-mitigation
configurations.

Continuity
Service Continuity, as opposed to High Availability, is defined here as the ability to deliver a
required level of service, at tolerable cost, in the presence of disrupting events, where:

• Disrupting events can be load, changes, logical errors, failures and disasters,
administrative actions (such as an upgrade), external attacks, and so on.

• The level of service can include response time, throughput, survivability of data/
operations, security/privacy, and so on. The required level of service may differ for every
service function, for every type of event, at different event handling phases.

• The cost can include people (number, expertise), equipment (hardware, software),
facilities (space, power).

OpenDaylight Developer Guide March 4, 2015 master

144

Clustering and Fault-tolerance - Clusters help to address both Scalability and High
Availability. If one of the cluster members fails, another cluster member can quickly assume
its responsibilities. This overcomes member failures, member hosting machine failures,
and member network connectivity failures. Defense4All clustering is scheduled for future
releases. In version 1.0, Defense4All runs as a Linux restartable service, so if it fails, the
hosting Linux OS revives Defense4All. This enables overcoming intermittent/sporadic
Defense4All failures. Failure of the Defense4All hosting machine means longer time and
modest additional human effort to revive the machine and its hosted Defense4All. If
the machine cannot be brought up, Defense4All can be started on another machine
in the network. To ensure that Defense4All resumes its operation (rather that restart
from scratch) you must pre-load the Defense4All (latest or earlier) state snapshot on that
machine. A non-clustered environment affects the time and the human effort to recover
from machine failures. The time factor is less critical, as Defense4All runs out-of-path, so its
longer non-availability period means a longer time to detect and mitigate new attacks.

State Persistence - Defense4All persists the state in the Cassandra DB running on the
same machine. In version 1.0, only one Cassandra instance cluster is configured. As long
as local stable storage does not crash, a Linux restart of the Defense4All service enables
Defense4All to quickly retrieve its latest state from Cassandra and resume its latest
operation. The same happens at failure and restart of the machine hosting Defense4All.
Taking the Defense4All state backup, and restoring on another machine allows for
resuming the Defense4All operation on that machine. Multi-node Cassandra clusters
(scheduled for future versions) will increase state persistence while reducing recovery time
and effort.

Restart Process - When Defense4All (re)starts, it first checks for saved configuration data,
and re-plays the configuration steps against all its relevant modules, driving any relevant
external programming and/ or configuration actions (such as against the PFC or AMS
devices), for example, re-adding a PO. The only difference between this configuration
replay and original configuration is that any dynamically obtained data is preserved, for
example, all PO statistics. This allows for easily reaching internal consistency, especially in
cases where Defense4All or its hosting machine has crashed. When configuration action
derivatives are replayed against external entities, for example adding missing PO stats
counters, and removing no longer necessary ones, consistency with external entities is also
reached. Defense4All becomes operational (launching its Web server), lets you or some
other component to complete Defense4All missing configurations according to possible
changes while Defense4All was down. This results in reaching end-to-end consistency.

Reset - Defense4All lets you reset its dynamically obtained data and configuration
information (factory reset). This enables you to overcome many logical errors and mis-
configurations. Note that a Defense4All restart or failover would not overcome such
problems. This mechanism is therefore complementary to the restart-failover mechanism,
and should typically be applied as a last resort.

Failure Isolation and Health Tracker - In Defense4All, failure isolation takes place in
the form of a failure of immediate recovery or compensation (as much as possible), and
a failure recording in a special module called Health Tracker. Except for a handful of
substantial failures (such as a failure to start the Framework), no failure in any module
immediately causes Defense4All to stop. Instead, each module records each failure in
its scope, providing severity specifications and an indication of failure permanence. If
the combined severity (permanent or temporary) of all failures exceeds a globally set
threshold, the HealthTracker triggers Defense4All shutdown (and revival by Linux).

OpenDaylight Developer Guide March 4, 2015 master

145

Later on, permanent or repeating temporary faults will cause HealthTracker to trigger
Defense4All soft and dynamic reset (of dynamically obtained data) or suggest to the
administrator to perform a factory reset (that also includes configuration information).

State Backup and Restore - The administrator can snapshot the Defense4All state, save the
backup in a different location, and restore to the original or new Defense4All location. This
allows overcoming certain logical bugs and mis-configurations, as well as the permanent
failure of the machine hosting Defense4All. To snapshot the Defense4All state, do the
following:

1. Quiesce (shutdown) Defense4All, causing the current state to flush to stable storage).
Avoid performing any configurations changes when it is brought back up, avoiding new
state changes.

2. Take the Cassandra snapshot for Defense4All DB - "DF": For backup-restore guidelines,
refer to http://www.datastax.com/docs/1.0/operations/backup_restore.

3. Copy the snapshot files to the desired storage archive.

To restore a Defense4All backup to a target machine, do the following:

1. Restore the desired saved snapshot in the target machine (same as backup or different).
For Cassandra backup-restore guidelines, refer to http://www.datastax.com/docs/1.0/
operations/ backup_restore.

2. Bring up Cassandra on that machine.

3. Bring up Defense4All on that machine.

http://www.datastax.com/docs/1.0/operations/backup_restore
http://www.datastax.com/docs/1.0/operations/
http://www.datastax.com/docs/1.0/operations/

OpenDaylight Developer Guide March 4, 2015 master

146

7. DLUX

Table of Contents
Setup and Run .. 146
DLUX Modules .. 148
Yang Utils ... 151

Setup and Run

Required Technology Stack

• NodeJS (Http Server, http://www.nodejs.org)

• Bower (JavaScript Package Manager, http://bower.io)

• GruntJS (JavaScript Task Runner, http://gruntjs.com)

• AngularJS (JavaScript client-side framework, http://www.angularjs.org)

• Karma (JavaScript Test Runner, http://karma-runner.github.io/)

• Other AngularJS/Third-party JS libraries

Install NodeJS

For Windows and Mac without brew:

1. Go to http://www.nodejs.org

2. Download and install NodeJS

For Mac with brew installed:

$ brew update
$ brew install node

Verify NodeJS is installed:

$ npm --version

Install required Node libraries

Install the following node components using npm. For Mac, you may have to use "sudo"

$ sudo npm -g install grunt-cli
$ sudo npm -g install bower
$ sudo npm -g install karma
$ sudo npm -g install karma-cli

http://www.nodejs.org
http://bower.io
http://gruntjs.com
http://www.angularjs.org
http://karma-runner.github.io/
http://www.nodejs.org

OpenDaylight Developer Guide March 4, 2015 master

147

Get latest DLUX code from git
Anonymous clone.

$ git clone http://git.opendaylight.org/gerrit/p/dlux.git

If you have a opendaylight.org account.

$ git clone ssh://<username>@git.opendaylight.org:29418/dlux.git

Build the DLUX code
 $ cd dlux/dlux-web

 #installs the necessary NodeJS related components for the project - will
 create a node_modules directory
 $ sudo npm install

 #installs necessary components provided by bower
 $ bower install

 # update dlux-web with all DLUX static resources for each module by running
 maven
 $ mvn clean install

 # run the unit tests and start karma test runner
 # this will open up the default browser pointing to karma test running and
 run the unit tests
 $ grunt watch

Hit Ctrl-C to quit

Build DLUX Karaf feature and distribution
Once you have installed all necessary modules mentioned above such as nodesjs, bower
etc.. You should be able to build the DLUX feature and distribution. Run following
command at DLUX home directory /dlux. Once successful, It will create DLUX Karaf
distribution and DLUX Karaf feature. You can find Karaf distribution at dlux/distribution-
dlux.

$ mvn clean install

Enable DLUX Karaf Feature
Get the Opendaylight official helium distribution or use Karaf distribution of DLUX project
created above. Unzip the Karaf distribution and go to bin directory of your distribution and
run following command to start Karaf. It will start the Karaf console, which may not have
any feature installed by default.

$./karaf

Install basic MD-SAL controller features on the Karaf console. I would recommend installing
the following features before starting the DLUX feature. L2Switch feature internally
enables MD-SAL data broker and openflow plugin service. L2Switch also makes sure that in
topology UI, hosts are also visible along with switches. We need the mdsal-apidocs feature
for yangUI in DLUX.

OpenDaylight Developer Guide March 4, 2015 master

148

$ feature:install odl-restconf
$ feature:install odl-l2switch-switch
$ feature:install odl-mdsal-apidocs

Install the AD-SAL features on the Karaf console.

$ feature:install odl-adsal-all
$ feature:install odl-adsal-northbound

Then, install the DLUX feature

$ feature:install odl-dlux-core

Once done, you should be able to access DLUX UI at

http://<IP of your controller machine>:8181/dlux/index.html

For login, use admin as both the username and the password. Before login, just make sure
that MD-SAL features are enabled. you can check what all features are installed by running
following command -

$ feature:list -i

Run standalone DLUX against the controller
• Start Karaf distribution with installed MD-SAL and AD-SAL features.

• Goto mininet VM and create a topology for the controller

Based on where you controller is running, Update baseUrl in file dlux/dlux-web/config/
development.json.

Back in the DLUX terminal, run

$ grunt live

Open a browser and go to the URL

http://localhost:9000/dlux/index.html

This should bring up the DLUX UI and pull data from the controller. Use admin as the
username and password to access the UI.

DLUX Modules
DLUX modules are the individual features such as nodes, topology etc. Each module has a
defined structure and you can find all existing modules under /dlux/modules directory of
code.

Module Structure
• module_folder

• <module_name>.module.js

• <module_name>.controller.js

• <module_name>.services.js

OpenDaylight Developer Guide March 4, 2015 master

149

• <module_name>.directives.js

• <module_name>.filter.js

• index.tpl.html

• <a_stylesheet>.css

Create New Module

Define the module

First, create an empty file with the module name. Next, we need to surround our module
with a define function. This allows RequireJs to see our module.js files. The first argument is
an array who contain all the module dependencies. The second is a callback function whose
body contain the AngularJs code base. The function parameters correspond with the order
of dependencies. Each dependences is injected into a parameter if it is provided. Finally, we
return the angular module to be able to inject it as a parameter in our others modules.

For each new module, you must have at least those two dependencies :

• angularAMD : It’s a wrapper arround angularjs to provide an AMD (Asynchronous
Module Definition) support. Which is used by RequireJs. For more information click here.

• app/core/core.services : This one is mandatory if you want to add content in the
navigation menu, the left bar or the top bar.

The following are not mandatory, but very often used.

• angular-ui-router : A library to provide URL routing

• routingConfig : To set the level access to a page

define(['angularAMD','app/routingConfig', 'angular-ui-router','app/core/
core.services'], function(ng) {
 var module = angular.module('app.a_module', ['ui.router.state',
 'app.core']);
 // module configuration
 module.config(function() {
 [...]
 });
 return module;
});

Set the register function

If your module is only required by the main application, you will need register your angular
components because the app will be already bootstrapped. Otherwise, it won’t see your
components on the runtime.

Tip

If your module is only use by an other module, you don’t have to do this step.

https://github.com/amdjs/amdjs-api/blob/master/AMD.md

OpenDaylight Developer Guide March 4, 2015 master

150

module.config(function($compileProvider, $controllerProvider, $provide) {
 module.register = {
 controller : $controllerProvider.register,
 directive : $compileProvider.directive,
 factory : $provide.factory,
 service : $provide.service
 };

Set the route

The next step is to set up the route for our module. This part is also done in the
configuration method of the module. We have to add $stateProvider as a parameter.

module.config(function($stateProvider) {
 var access = routingConfig.accessLevels;
 $stateProvider.state('main.module', {
 url: 'module',
 views : {
 'content' : {
 templateUrl: 'src/app/module/module.tpl.html',
 controller: 'ModuleCtrl'
 }
 }
 });
});

Adding element to the navigation menu

To be able to add item to the navigation menu, the module requires the
NavHelperProvider parameter in the configuration method. This helper has a method to
easily add an item to the menu. The first parameter is an id that refers to the level of your
menu and the second is a object.

var module = angular.module('app.a_module', ['app.core']);
module.config(function(NavMenuHelper) {
 NavMenuHelper.addToMenu('myFirstModule', {
 "link" : "#/module/index",
 "active" : "module",
 "title" : "My First Module",
 "icon" : "icon-sitemap",
 "page" : {
 "title" : "My First Module",
 "description" : "My first module"
 }
 });
 });

The ID parameter supports, for now, two levels of depth. So if your ID looks like
rootNode.childNode, the helper will look for a node named rootNode and it will append
the childNode to it. If the root node doesn’t exist, it will create it.

Link the controller file

To include the controller file, we will use the NavHelperProvider. It contain a method who
will load the given file.

[...]

OpenDaylight Developer Guide March 4, 2015 master

151

 NavHelperProvider.addControllerUrl('<path_to_module_folder>/
<module_name>.controller');

The module.js file is now complete.

Create the Controllers, factory, directive, etc

Creating the controller and other components are similar to the module.

• First, add the define method

• Second, add the relative path to the module definition

• Last, create your methods as you usually do it with angularJs

define(['<relative_path_to_module>/<module_name>.module'], function(module)
 {
 module.register.controller('ModuleCtrl', function($rootScope, $scope) {
 });
});

Append to the main file

The last thing to do is to add the path of the module definition file and add the name of
the angular module. So, edit the file app.module.js as the follows.

//----Temporary-------\\
var module = [
 [...]
 '<relative_path_module>/<module_name>.js',
 [...]
var e = [
 [...]
 'a_module',
 [...]
//--------------------\\

Yang Utils
Yang Utils are used by yang UI to perform all CRUD operations. All of these utilities are
present in yangutils.services.js file. It has following factories -

Factories

• arrayUtils – defines functions for working with arrays.

• pathUtils – defines functions for working with xpath (paths to APIs and subAPIs). It
divides xpath string to array of elements, so this array can be later used for search
functions.

• syncFact – provides synchronization between requests to and from ODL when it’s
needed.

• custFunct – it is linked with apiConnector.createCustomFunctionalityApis in yangui
controller in yangui.controller.js. That function makes it possible to create some custom

OpenDaylight Developer Guide March 4, 2015 master

152

function called by the click on button in index.tpl.html. All custom functions are stored
in array and linked to specific subAPI. When particular subAPI is expanded and clicked,
its inputs (linked root node with its child nodes) are displayed in the bottom part of the
page and its buttons with custom functionality are displayed also.

• reqBuilder – creates object builder = request built from filled inputs on page in JSON
format. It is possible with “show preview” button. This request is sent to ODL when
button PUT or POST is clicked.

• yinParser – factory for reading of .xml files of yang models and creating objects
hierarchy. Every statement from yang is represented by node.

• nodeWrapper – adds functions to objects in tree hierarchy created with yinParser. These
functions provide functionality for every type of node.

• apiConnector – the main functionality is filling the main structures and linking them.
Structure of APIs and subAPIs which is two level array - first level is filled by main
APIs, second level is filled by others sub APIs. Second main structure is array of root
nodes, which are objects including root node and its children nodes. Linking these two
structures is creating links between every subAPI (second level of APIs array) and its root
node, which must be displayed like inputs when subAPI is expanded.

• yangUtils – some top level functions which are used by yangui controller for creating the
main structures.

OpenDaylight Developer Guide March 4, 2015 master

153

8. Group-Based Policy

Table of Contents
Group-Based Policy Architecture Overview ... 154
Policy Model .. 155
State Repositories .. 169
Renderers .. 170

This chapter describes the Group-Based Policy project. The Group-Based Policy project
defines an application-centric policy model for OpenDaylight that separates information
about application connectivity requirements from information about the underlying details
of the network infrastructure.

OpenDaylight Developer Guide March 4, 2015 master

154

Group-Based Policy Architecture Overview

Figure 8.1. Group-Based Policy Architecture

State repositories (blue) communicate using MD-SAL (orange) with external orchestration
systems as well as internally with renderers (green) through the renderer common
framework (red).

The components of the architecture are divided into two main categories. First, there are
components that are responsible for managing the policy, configuration, and related state.
These are the components that deal with the higher-order group-based policy that exists
independent of the underlying infrastructure. Second, the renderer components that are
responsible for applying the policy model to the underlying network infrastructure. The

OpenDaylight Developer Guide March 4, 2015 master

155

system can support potentially a variety of renderers that may have very different sets of
features and different approaches for enabling the policy that the user has requested.

The key to understanding the architecture is to first understand the policy model — much of
the design of the system flows directly from the design of the policy model.

Policy Model
The policy model is built around the idea of placing endpoints into groups that share
the same semantics, and then defining what other groups those endpoints need to
communicate, and then finally defining how these endpoints need to communicate. In this
way, we represent the requirements of the application and then force the infrastructure to
figure out how to meet these requirements, rather than defining the policy in terms of the
underlying infrastructure.

Policy Model UML Diagrams

Note

The UML diagrams included here are not normative. They attempt to provide
a pictorial representation of the group-based policy model. In the event of any
conflicts, the RESTful interfaces that are generated dynamically from the group-
based policy yang models are normative. The group-based policy yang models
can be found at ./groupbasedpolicy/groupbasedpolicy/src/main/yang/model/.

OpenDaylight Developer Guide March 4, 2015 master

156

Figure 8.2. Policy Model: Contract Selection

OpenDaylight Developer Guide March 4, 2015 master

157

Figure 8.3. Policy Model: Clauses and Subject Selection

OpenDaylight Developer Guide March 4, 2015 master

158

Figure 8.4. Policy Model: Subject Contents

OpenDaylight Developer Guide March 4, 2015 master

159

Figure 8.5. Policy Model: Forwarding

Policy Concepts

This section describes some of the most important concepts in the policy model. See the
next section on Policy Resolution for a description of how these fit together to determine
how to apply the policy to the network.

Endpoint An endpoint is a specific device in the network. It could be a VM
interface, a physical interface, or other network device. Endpoints
are defined and assigned to endpoint groups through mechanisms
that are not specified by the policy model (See Endpoint Repository
for more information). Endpoints can have associated conditions
that are just labels that represent some potentially-transient status
information about an endpoint.

Endpoint Group Endpoint groups are sets of endpoints that share a common set of
policies. Endpoint groups can participate in contracts that determine
the kinds of communication that is allowed. They also expose both
requirements and capabilities, which are labels that help to determine
how contracts will be applied. An endpoint group is allowed to
specify a parent endpoint group from which it inherits.

Contract Contracts determine which endpoints can communicate and in what
way. Contracts between pairs of endpoint groups are selected by
the contract selectors defined by the endpoint group. Contracts

OpenDaylight Developer Guide March 4, 2015 master

160

expose qualities, which are labels that can help endpoint groups
to select contracts. Once the contract is selected, contracts have
clauses that can match against requirements and capabilities exposed
by endpoint groups, as well as any conditions that may be set on
endpoints, in order to activate subjects that can allow specific kinds
of communication. A contracts is allowed to specify a parent contract
from which it inherits.

Clause Clauses are defined as part of a contract. Clauses determine how
a contract should be applied to particular endpoints and endpoint
groups. Clauses can match against requirements and capabilities
exposed by endpoint groups, as well as any conditions that may be
set on endpoints. Matching clauses define some set of subjects which
can be applied to the communication between the pairs of endpoints.

Subject Subjects describe some aspect of how two endpoints are allowed
to communicate. Subjects define an ordered list of rules that will
match against the traffic and perform any necessary actions on that
traffic. No communication is allowed unless a subject allows that
communication.

Introduction to Policy Resolution

There are a lot of concepts to unpack and it can be difficult to see how this all fits together.
Let’s imagine that we want to analyze a particular flow of traffic in the network and
walk through the policy resolution process for that flow. The key here is that the policy
resolution process happens logically in three phases. First, we need to select the contracts
that are in scope for the endpoint groups of the endpoints of the flow. Next, we select the
set of subjects that apply to the endpoints of the flow. Finally, we apply the rules from the
applicable subjects to the actual network traffic in the flow.

Note that this description gives a semantic understanding of how the policy model should
be applied. The steps described here may or may not correspond to an actual efficient
implementation of this policy model.

Contract Selection

The first step in policy resolution is to select the contracts that are in scope. For a particular
flow, we look up the endpoint groups for each of the endpoints involved in the flow.

Endpoint groups participate in contracts either as a provider or as a consumer. Each
endpoint group can participate in many contracts at the same time, but for each contract
it can be in only one role at a time. In addition, there are two ways for an endpoint group
to select a contract: either with a named selector or with a target selector. Named selectors
simply select a specific contract by its contract ID. Target selectors allow for additional
flexibility by matching against qualities of the contract’s target.

Thus, there are a total of 4 kinds of contract selector:

provider named selector Select a contract by contract ID, and participate as a
provider.

OpenDaylight Developer Guide March 4, 2015 master

161

provider target selector Match against a contract’s target with a quality
matcher, and participate as a provider.

consumer named selector Select a contract by contract ID, and participate as a
consumer.

consumer target selector Match against a contract’s target with a quality
matcher, and participate as a consumer.

So to determine which contracts are in scope for our flow, we must find contracts where
either the source endpoint group selects a contract as either a provider or consumer, while
the destination endpoint group matches against the same contract in the corresponding
role. So if endpoint x in endpoint group X is communicating with endpoint y in endpoint
group Y, a contract C is in scope if either X selects C as a provider and Y selects C as a
consumer, or X selects C as a consumer and Y selects C as a provider.

The details of how quality matchers work are described further below in Matchers. For
now, we can simply state that quality matchers provide a flexible mechanism for selecting
the contract based on labels.

The end result of the contract selection phase can be thought of as a set of tuples
representing selected contract scopes. The fields of the tuple are:

• Contract ID

• The provider endpoint group ID

• The name of the selector in the provider endpoint group that was used to select the
contract, which we’ll call the matching provider selector.

• The consumer endpoint group ID

• The name of the selector in the consumer endpoint group that was used to select the
contract, which we’ll call the matching consumer selector.

Subject Selection

The second phase in policy resolution is to determine which subjects are in scope. The
subjects allow us to define what kinds of communication are allowed between endpoints in
the endpoint groups. For each of the selected contract scopes from the contract selection
phase, we’ll need to apply the subject selection procedure.

Before we can discuss how the subjects are matched, we need to first examine what
we match against to bring those subjects into scope. We match against labels called,
capabilities, requirements and conditions. Endpoint groups have capabilities and
requirements, while endpoints have conditions.

Requirements and Capabilities

When acting as a provider, endpoint groups expose capabilities, which are labels
representing specific pieces of functionality that can be exposed to other endpoint groups
that may meet functional requirements of those endpoint groups. When acting as a
consumer, endpoint groups expose requirements, which are labels that represent that fact
that the endpoint group requires some specific piece of functionality. As an example, we

OpenDaylight Developer Guide March 4, 2015 master

162

might create a capability called "user-database" which indicates that an endpoint group
contains endpoints that implement a database of users. We might create a requirement
also called "user-database" to indicate an endpoint group contains endpoints that will need
to communicate with the endpoints that expose this service. Note that in this example
the requirement and capability have the same name, but the user need not follow this
convention.

We examine the matching provider selector (that was used by the provider endpoint group
to select the contract) to determine the capabilities exposed by the provider endpoint
group for this contract scope. The provider selector will have a list of capabilities either
directly included in the provider selector or inherited from a parent selector or parent
endpoint group (See Inheritance below). Similarly, the matching consumer selector will
expose a set of requirements.

Conditions

Endpoints can have conditions, which are labels representing some relevant piece of
operational state related to the endpoint. An example of a condition might be "malware-
detected," or "authentication-succeeded." We’ll be able to use these conditions to affect
how that particular endpoint can communicate. To continue with our example, the
"malware-detected" condition might cause an endpoint’s connectivity to be cut off, while
"authentication-succeeded" might open up communication with services that require an
endpoint to be first authenticated and then forward its authentication credentials.

Conditions do not actually appear in the policy configuration model other than as a named
reference. To determine the set of conditions that apply to a particular endpoint, the
endpoint will need to be looked up in the endpoint registry, and it associated condition
labels retrieved from there.

Clauses

Clauses are what will do the actual selection of subjects. A clause has four lists of matchers
in two categories. In order for a clause to become active, all four lists of matchers must
match. A matching clause will select all the subjects referenced by the clause. Note that an
empty list of matchers counts as a match.

The first category is the consumer matchers, which match against the consumer endpoint
group and endpoints. The consumer matchers are:

Requirement matchers matches against requirements in the matching
consumer selector.

Consumer condition matchers matches against conditions on endpoints in the
consumer endpoint group

The second category is the provider matchers, which match against the provider endpoint
group and endpoints. The provider matchers are:

Capability matchers matches against capability in the matching provider
selector.

Provider condition matchers matches against conditions on endpoints in the provider
endpoint group

OpenDaylight Developer Guide March 4, 2015 master

163

Clauses have a list of subjects that apply when all the matchers in the clause match. The
output of the subject selection phase logically is a set of subjects that are in scope for any
particular pair of endpoints.

Rule Application

Now that we have a list of subjects that apply to the traffic between a particular set of
endpoints, we’re ready to describe how we actually apply policy to allow those endpoints
to communicate. The applicable subjects from the previous step will each contain a set of
rules.

Rules consist of a set of classifiers and a set of actions. Classifiers match against traffic
between two endpoints. An example of a classifier would be something that matches
against all TCP traffic on port 80, or one that matches against HTTP traffic containing a
particular cookie. Actions are specific actions that need to be taken on the traffic before it
reaches its destination. Actions could include tagging or encapsulating the traffic in some
way, redirecting the traffic, or applying some service chain. For more information on how
classifiers and actions are defined, see below under Subject Features.

If and only if all classifiers on a rule matches, all the actions on that rule are applied (in
order) to the traffic. Only the first matching rule will apply.

Rules, subjects, and actions have an order parameter, where a lower order value means
that a particular item will be applied first. All rules from a particular subject will be applied
before the rules of any other subject, and all actions from a particular rule will be applied
before the actions from another rule. If more than item has the same order parameter, ties
are broken with a lexicographic ordering of their names, with earlier names having logically
lower order.

We’ve now reached final phase in the three-phases policy resolution process. First, we
found the set of contract scopes to apply. Second, we found the set of subjects to apply.
Finally, we saw how we apply the subjects to traffic between pairs of endpoints in order to
realize the policy. The remaining sections will fill in additional detail for the policy resolution
process.

Matchers
Matchers have been mentioned a few times now without really explaining what they are.
Matchers specify a set of labels (which include requirements, capabilities, conditions, and
qualities) to match against. There are several kinds of matchers that operate similarly:

• Quality matchers are used in target selectors during the contract selection phase. Quality
matchers provide a more advanced and flexible way to select contracts compared to a
named selector.

• Requirement matchers and capability matchers are used in clauses during the subject
selection phase to match against requirements and capabilities on endpoint groups

• Condition matchers are used in clauses during the subject selection phase to match
against conditions on endpoints

A matcher is, at its heart, fairly simple. It will contain a list of label names, along with a
match type. The match type can be either "all," which means the matcher matches when all

OpenDaylight Developer Guide March 4, 2015 master

164

of its labels match, "any," which means the matcher matches when any of its labels match,
or "none," which means the matcher matches when none of its labels match. Note that a
matcher which always matches can be made by matching against an empty set of labels
with a match type of "all."

Additionally each label to match can optionally include a relevant "name" field. For quality
matchers, this is a target name. For capability and requirement matchers, this is a selector
name. If the name field is specified, then the matcher will only match against targets or
selectors with that name, rather than any targets or selectors.

There are some additional semantics related to inheritance. Please see the section for
Inheritance for more details.

Quality Matchers

A contract contains targets that are just a set of quality labels. A target selector on an
endpoint group matches against these targets using quality matchers. A quality matcher is
a matcher where the label it matches is a quality, and the name field is a target name.

Requirement and Capability Matchers

The matching selector from the contract selection phase will define either requirements
or capabilities for the consumer and provider endpoint groups, respectively. Clauses can
match against these labels using requirement and capability matchers. Requirements
matchers match against requirements while capability matchers match against capabilities.
In both cases, the name field is a selector.

Condition Matcher

Endpoints can have condition labels. The condition matcher can be used in a clause to
match against endpoints with particular combinations of conditions.

Tenants

The system allows multiple tenants that are designed to allow separate domains of
administration. Contracts and endpoint groups are defined within the context of a
particular tenant. Endpoints that belong to endpoint groups in separate tenants cannot
communicate with each other except through a special mechanism to allow cross-tenant
contracts called contract references.

While it would be be possible to define semantics for tenant inheritance, as currently
defined there is no way for tenants to inherit from each other. There is, however, a
limited mechanism through the special common tenant (see Common Tenant below).
All references to names are within the scope of that particular tenant, with the limited
exceptions of the common tenant and contract references.

Contract References

Contract references are the mechanism by which endpoints in different tenants can
communicate. This is especially useful for such common use cases as gateway routers or
other shared services. In order to for an endpoint group to select a contract in a different
tenant, there must first exist a contract reference defined in the endpoint group’s local

OpenDaylight Developer Guide March 4, 2015 master

165

tenant. The contract reference is just a tenant ID and a contract ID; this will bring that
remote contract into the scope of the local contract. Note that this reference may be
subject to additional access control mechanisms.

Endpoint groups can participate in such remotely-defined contracts only as consumers, not
as providers.

Once the contract reference exists, endpoint groups can now select that contract using
either named or target selectors. By defining a contract reference, the qualities and targets
in that contract are imported into the namespace of the local tenant for the contract
selection phase. Similarly, the requirements and conditions from the local tenant will be
used when performing the consumer matches in the subject selection phase.

Common Tenant

The common tenant is an area where definitions that are useful for all tenants can be
created. Everything defined in the common tenant behaves exactly as though it were
defined individually in every tenant. This applies to resolution of labels for the purposes of
contract selection, as well as subject feature instances (see Subject Features below).

If a name exists in both the common tenant and another tenant, then when resolving
names within the context of that tenant the definition in the common tenant will be
masked. One special case to consider is if a definition in a tenant defines the common
tenant definition as its parent and uses the same name as the parent object. This works as
you might expect: the name reference from the child definition will extend the behavior of
the definition in the common tenant, but then mask the common tenant definition so that
references to the name within the tenant will refer to the extended object.

Subject Features
Subject features are objects that can be used as a part of a subject to affect the
communication between pairs of endpoints. This is where the policy model meets the
underlying infrastructure. Because different networks will have different sets of features,
we need some way to represent to the users of the policy what is possible. Subject features
are the answer to this.

There are two kinds of subject features: classifiers and actions. Classifiers match on
traffic between endpoints, and actions perform some operation on that traffic (See Rule
Application above for more information on how they are used).

Subject features are defined with a subject feature definition. The definition defines a
name and description for the feature, along with a set of parameters that the item can
take. This is the most general description for the subject feature, and this definition is
global and applies across all tenants. As an example, a classifier definition might be called
"tcp_port", and would take an integer parameter "port".

Next, there are subject feature instances. Subject feature instances are scoped to a
particular tenant, and reference a subject feature definition, but fill in all required
parameters. To continue our example, we might define a classifier instance called "http"
that references the "tcp_port" classifier and species the parameter "port" as 80.

Finally, there are subject feature references, which are references to subject feature
instances. Subjects contain these subject feature references in order to apply the feature.

OpenDaylight Developer Guide March 4, 2015 master

166

These references also contain, as appropriate an order field to determine order of
operations and fields for matching the direction of the traffic.

If the underlying network infrastructure is unable to to implement a particular subject,
then it must raise an exception related to that subject. It may then attempt to relax the
constraints in a way that allows it to implement the policy. However, when doing this it
must attempt to avoid allowing traffic that should not be allowed. That is, it should "fail
closed" when relaxing constraints.

Forwarding Model

Communication between endpoint groups can happen at layer 2 or layer 3, depending on
the policy configuration. We define our model of the forwarding behavior in a way that
supports very flexible semantics including overlapping layer 2 and layer 3 addresses.

We define several kinds of network domains, which represent some logical grouping or
namespace of network addresses:

L3 Context A layer 3 context represents a namespace for layer 3 addresses.
It represents a domain inside which endpoints can communicate
without requiring any address translation. A subtype of a
forwarding context, which is a subtype of a network domain.

L2 Bridge Domain A layer 2 bridge domain represents a domain in which layer 2
communication is possible when allowed by policy. Bridge domains
each have a single parent L3 context. A subtype of an L2 domain,
which is a subtype of a forwarding context.

L2 Flood Domain A layer 2 flood domain represents a domain in which layer 2
broadcast and multicast is allowed. L2 flood domains each have a
single parent L2 bridge domain. A subtype of an L2 domain.

Subnet An IP subnet associated with a layer 2 or layer 3 context. Each
subnet has a single parent forwarding context. A subtype of a
network domain.

Every endpoint group references a single network domain.

Inheritance

This section contains information on how inheritance works for various objects in the
system. This is covered here to avoid cluttering the main sections with a lot of details that
would make it harder to see the big picture.

Some objects in the system include references to parents, from which they will inherit
definitions. The graph of parent references must be loop free. When resolving names, the
resolution system must detect loops and raise an exception. Objects that are part of these
loops may be considered as though they are not defined at all.

Generally, inheritance works by simply importing the objects in the parent into the child
object. When there are objects with the same name in the child object, then the child

OpenDaylight Developer Guide March 4, 2015 master

167

object will override the parent object according to rules which are specific to the type of
object. We’ll next explore the detailed rules for inheritance for each type of object.

Endpoint Groups

Endpoint groups will inherit all their selectors from their parent endpoint groups. Selectors
with the same names as selectors in the parent endpoint groups will inherit their behavior
as defined below.

Selectors

Selectors include provider named selectors, provider target selectors, consumer named
selectors, and consumer target selectors. Selectors cannot themselves have parent selectors,
but when selectors have the same name as a selector of the same type in the parent
endpoint group, then they will inherit from and override the behavior of the selector in the
parent endpoint group.

Named Selectors

Named selectors will add to the set of contract IDs that are selected by the parent named
selector.

Target Selectors

A target selector in the child endpoint group with the same name as a target selector in the
parent endpoint group will inherit quality matchers from the parent. If a quality matcher
in the child has the same name as a quality matcher in the parent, then it will inherit as
described below under Matchers.

Contracts

Contracts will inherit all their targets, clauses and subjects from their parent contracts.
When any of these objects have the same name as in the parent contract, then the
behavior will be as defined below.

Targets

Targets cannot themselves have a parent target, but it may inherit from targets with the
same name as the target in a parent contract. Qualities in the target will be inherited from
the parent. If a quality with the same name is defined in the child, then this does not have
any semantic effect except if the quality has its inclusion-rule parameter set to "exclude." In
this case, then the label should be ignored for the purpose of matching against this target.

Subjects

Subjects cannot themselves have a parent subject, but it may inherit from a subject with
the same name as the subject in a parent contract.

The order parameter in the child subject, if present, will override the order parameter in
the parent subject.

The rules in the parent subject will be added to the rules in the child subject. However, the
rules will not override rules of the same name. Instead, all rules in the parent subject will

OpenDaylight Developer Guide March 4, 2015 master

168

be considered to run with a higher order than all rules in the child; that is all rules in the
child will run before any rules in the parent. This has the effect of overriding any rules in the
parent without the potentially-problematic semantics of merging the ordering.

Clauses

Clauses cannot themselves have a parent clause, but it may inherit from a clause with the
same name as the clause in a parent contract.

The list of subject references in the parent clause will be added to the list of subject
references in the child clause. There is no meaningful overriding possible here; it’s just a
union operation. Note of course though that a subject reference that refers to a subject
name in the parent contract might have that name overridden in the child contract.

Each of the matchers in the clause are also inherited by the child clause. Matchers in the
child of the same name and type as a matcher from the parent will inherit from and
override the parent matcher. See below under Matchers for more information.

Matchers

Matchers include quality matchers, condition matchers, requirement matchers, and
capability matchers. Matchers cannot themselves have parent matchers, but when there is
a matcher of the same name and type in the parent object, then the matcher in the child
object will inherit and override the behavior of the matcher in the parent object.

The match type, if specified in the child, overrides the value specified in the parent.

Labels are also inherited from the parent object. If there is a label with the same name in
the child object, this does not have any semantic effect except if the label has its inclusion-
rule parameter set to "exclude." In this case, then the label should be ignored for the
purpose of matching. Otherwise, the label with the same name will completely override the
label from the parent.

Subject Feature Definitions

Subject features definitions, including classifier definitions and subject definitions can also
inherit from each other by specifying a parent object. These are a bit different from the
other forms of override because they do not merely affect the policy resolution process, but
rather affect how the policy is applied in the underlying infrastructure.

For the purposes of policy resolution, a subject feature will inherit from its parent any
named parameters. However, unlike in other cases, if a named parameter with the same
name exists in the child as in the parent, this is an invalid parameter and will be ignored in
the child. That is, the child cannot override the type of a named parameter in a child subject
feature.

For the purposes of applying the subject in the underlying infrastructure, the child subject
feature is assumed to add some additional functionality to the parent subject feature such
that the child feature is a specialization of that parent feature. For example, there might
be a classifier definition for matching against a TCP port, and a child classifier definition
that allowed for deep packet inspection for a particular protocol that extended the base

OpenDaylight Developer Guide March 4, 2015 master

169

classifier definition. In this case, the child classifier would be expected to match the TCP
port as well as apply its additional deep packet inspection semantics.

If the underlying infrastructure is unable to apply a particular subject feature, it can
attempt to fall back to implementing instead the parent subject feature. The parameter
fallback-behavior determines how this should apply. If this is set to "strict" then a failure
to apply the child is a fatal error and the entire subject must be ignored. If the fallback
behavior is "allow-fallback" then the error is nonfatal and it is allowed to apply instead only
the parent subject feature.

State Repositories
The state repositories are distributed data stores that provide the configuration and
operational data required for renderers to apply the policy as specified by the user. The
state repositories all model their state as yang models, and store that state in the MD-
SAL data store as either operational or configuration data, as appropriate. The state
repositories implement a minimum amount of actual functionality and instead focus on
defining the models and supporting the correct querying and subscription semantics. The
intelligence is expected to be in the renderers.

Querying and Subscription

State repositories support both simple queries on the data but more important allow
subscriptions to the data, so that systems that are responsible for applying the policy model
are informed about changes to that policy configuration or operational state that might
affect the policy. Those subsystems are expected to continuously reevaluate the policy as
these changes come in make the required changes in the underlying infrastructure.

Endpoint Repository

The endpoint repository is responsible for storing metadata about endpoints, including
how they are mapped into endpoint groups. Information about endpoints can be added
to the repository either by a central orchestration system or by a renderer that performs
discovery to learn about new endpoints. In either case, the semantics of how an endpoint
is mapped to an endpoint group are not defined here; the system that sets up the
information in the endpoint repository must have its own method for assigning endpoints
to endpoint groups.

Policy Repository

The policy repository stores the policies themselves. This includes endpoint groups,
selectors, contracts, clauses, subjects, rules, classifiers, actions, and network domains
(everything in the policy model except endpoints and endpoint-related metadata). The
policy repository is populated through the northbound APIs.

Status Repository

The status repository will be added in a future release of group-based policy.

OpenDaylight Developer Guide March 4, 2015 master

170

Renderers
One of the key design features of the group-based policy architecture is that it can
support a variety of renderers based on very different underlying technology. This is
possible because the policy model is based only on high-level user intent, and contains no
information about the details of how the network traffic is actually forwarded. However,
one consequence of this design choice is that the renderers actually contain most of
the complexity in the design of the system, and most of the real problems in building
a software-defined virtual network solution will need to be solved by the renderers
themselves.

Renderer Common Framework

The renderers have available to them some service and libraries that collectively make up
the renderer common framework. These are not actually required to implement a renderer,
but where convenient functionality that would be generally useful should be placed here.

InheritanceUtils

This class provides a convenient utility to resolve all the complex inheritance rules into a
normalized view of the policy for a tenant.

 /**
 * Fully resolve the specified {@link Tenant}, returning a tenant with all
 * items fully normalized. This means that no items will have parent/child
 * relationships and can be interpreted simply without regard to inheritance
 * rules
 * @param tenantId the {@link TenantId} of the {@link Tenant}
 * @param transaction a {@link DataModificationTransaction} to use for
 * reading the data from the policy store
 * @return the fully-resolved {@link Tenant}
 */
 public static Tenant resolveTenant(TenantId tenantId,
 DataModificationTransaction transaction)

PolicyResolverService

The policy resolver service resolves the policy model into a representation suitable for
rendering to an underlying network. It will run through the contract resolution and

The policy resolver is a utility for renderers to help in resolving group-based policy into a
form that is easier to apply to the actual network.

For any pair of endpoint groups, there is a set of rules that could apply to the endpoints on
that group based on the policy configuration. The exact list of rules that apply to a given
pair of endpoints depends on the conditions that are active on the endpoints.

In a more formal sense: Let there be endpoint groups Gn, and for each Gn a set of
conditions Cn that can apply to endpoints in Gn. Further, let S be the set of lists of rules
defined in the policy. Our policy can be represented as a function F: (Gn, 2 Cn, Gm, 2 Cm) -> S,
where 2 Cn represents the power set of Cm. In other words, we want to map all the possible
tuples of pairs of endpoints along with their active conditions onto the right list of rules to
apply.

OpenDaylight Developer Guide March 4, 2015 master

171

We need to be able to query against this policy model, enumerate the relevant classes of
traffic and endpoints, and notify renderers when there are changes to policy as it applies to
active sets of endpoints and endpoint groups.

The policy resolver will maintain the necessary state for all tenants in its control domain,
which is the set of tenants for which policy listeners have been registered.

Open vSwitch-Based Overlay Renderers

This section describes a data plane architecture for building a network virtualization
solution using Open vSwitch. This data plane design is used by two renderers: the
OpenFlow Renderer and the OpFlex Renderer.

The design implements an overlay design and is intended to meet the following use cases:

• Routing when required between endpoint groups, including serving as a distributed
default gateway.

• Optional broadcast within a bridge domain.

• Management of L2 broadcast protocols including ARP and DHCP to avoid broadcasting.

• Layer 2-4 classifiers for policy between endpoint groups, including connection tracking/
reflexive ACLs.

• Service insertion/redirection

Network Architecture

Network Topology

The network architecture is an overlay network based on VXLAN or similar encapsulation
technology, with an underlying IP network that provides connectivity between hypervisors
and the controller. The overlay network is a full-mesh set of tunnels that connect each pair
of vSwitches.

The "underlay" IP network has no special requirements though it should be set up
with ECMP to the top-of-rack switch for the best performance, but this is not a strict
requirement for correct behavior. Also, the underlay network should be configured with a
path MTU that’s large enough to accommodate the overlay tunnel headers. For a typical
overlay network with a 1500 byte MTU, a 1600 byte MTU in the underlay network should
be sufficient. If this is not configured correctly, the behavior will be correct but it will result
in fragmentation which could have a severe negative effect on performance.

Physical devices such as routers on the IP network are trusted entities in the system since
these devices would have the ability to forge encapsulated packets.

OpenDaylight Developer Guide March 4, 2015 master

172

Figure 8.6. GBP OVS Network Topology Example

The Network Topology Example figure shows an example of a supported network
topology, with an underlying IP network and hypervisors with Open vSwitch. Infrastructure
components and elements of the underlay network are shown in grey. Three endpoint
groups exist with different subnets in the same layer 3 context, which are show in red,
green, and blue. A tunneled path (dotted red line) is shown between two red virtual
machines on different VM hosts.

Control Network

The security of the system depends on keeping a logically isolated control network separate
from the data network, so that guests cannot reach the control network. Ideally, the
network is kept isolated through an out-of-band control network. This can be accomplished
using a separate NIC, a special VLAN, or other mechanism. However, the system is also
designed to operate in the case where the control traffic and the data traffic are on the
same layer 2 network and isolation is still enforced.

In the Network Topology Example figure above, the control network is shown as
172.16/16. The VM hosts, and controllers all have addresses on this network, and
communicate using OpenFlow and OVSDB on this network. In the example, the router is
shown with an interface configured on this network as well; this works but in practice it
is preferable to isolate this network by accessing it through a VPN or jump box if needed.
Note that there is no requirement that the control network be all in one subnet.

OpenDaylight Developer Guide March 4, 2015 master

173

The router is also shown with an interface configured on the 10/8 network. This network
will be used for routing traffic destined for internet hosts. Both the 172.16/16 and 10/8
networks here are isolated from the guest address spaces.

Overlay Network

Whenever traffic between two guests is in the network, it will be encapsulated using a
VXLAN tunnel (though supporting additional encapsulation formats could be configured in
the future). A packet encapsulated as VXLAN contains:

• Outer ethernet header, with source and destination MAC

• Outer IP header, with source and destination IP address

• Outer UDP header

• VXLAN header, with a virtual network identifier (VNI). The virtual network identifier is a
24-bit field that uniquely identifies an endpoint group in our policy model.

• Encapsulated original packet, which includes:

• Inner ethernet header, with source and destination MAC

• (Optional) Inner IP header, with source and destination IP address

Delivering Packets

Endpoints can communicate with each other in a number of different ways, and each is
processed slightly differently. Endpoint groups exist inside a particular layer 2 or layer 3
context which represents a namespace for their network identifiers. It’s only possible for
endpoints to address endpoints within the same context, so no communication is possible
for endpoints in different layer 3 contexts, and only layer 3 communication is possible for
endpoints in different layer 2 contexts.

Overlay Tunnels

The next key piece of information is the location of the destination endpoint. For
destinations on the same switch, we can simply apply policy (see below), perform any
routing action required (see below), then deliver it to the local port.

When the endpoints are located on different switches, we need to use the overlay tunnel.
This is the case shown as a dotted red line in the Network Topology Example figure. After
policy is applied to the packet, we encapsulated it in a tunnel with the tunnel ID set to
a unique ID for the destination endpoint group. The outer packet is addressed to the IP
address of the OVS host that hosts the destination endpoint. This encapsulated packet is
now sent out to the underlay network, which is just a regular IP network that can deliver
the packet to the destination switch.

When the encapsulated packet arrives on the other side, the destination vSwitch inspects
the metadata of the encapsulation header to see if the policy has been applied already. If
the policy has not been applied or if the encapsulation protocol does not support carrying
of metadata, the policy must be applied at the destination vSwitch. The packet can now be
delivered to the destination endpoint.

OpenDaylight Developer Guide March 4, 2015 master

174

Bridging and Routing

The system will transparently handle bridging or routing as required. Bridging occurs
between endpoints in the same layer 2 context, while routing will generally be needed for
endpoints in different layer 2 contexts. More specifically, a packet needs to be routed if it is
addressed to the gateway MAC address. We can simply use a fixed MAC address to serve as
the gateway everywhere. Packets addressed to any other MAC address can be bridged.

Bridged packets are easy to handle, since we don’t need to do anything special to them to
deliver them to the destination. They can be simply delivered unmodified.

Routing is slightly more complex, though not massively so. When routing locally on a
switch, we simply rewrite the destination MAC address to the MAC of the destination
endpoint, and set the source MAC to the gateway MAC, decrement the TTL, and then
deliver it to the correct local port.

When routing to an endpoint on a different switch, we’ll actually perform routing in two
steps. On the source switch, we will decrement TTL and rewrite the source MAC address
to the MAC of the gateway router (so that both the source and the destination MAC are
set to the gateway router’s MAC). It’s then delivered to the destination switch using the
appropriate tunnel. On the destination switch, we perform a second routing action by
now rewriting the destination MAC as the MAC address of the destination endpoint and
decrementing the TTL again. The reason why do the routing as two hops is that this avoids
the need to maintain on every switch the correct MAC address for every endpoint on the
network. Each switch needs the mappings only for endpoints that are directly attached to
that switch. An example of a communication pathway requiring this routing is shown in the
figure below.

OpenDaylight Developer Guide March 4, 2015 master

175

Figure 8.7. GBP OVS Routing Example

In this example, we show the path of traffic from the blue guest 192.168.2.3 and the red
guest 192.168.1.2. The traffic is encapsulated in a tunnel marked with the blue endpoint
group’s VNI while in transit between the two switches. Because two endpoints are in
different subnets, the traffic is routed in two hops: one the source switch and one on the
destination switch.

The vSwitch on each host must respond to local ARP requests for the gateway IP address
and return a logical MAC address representing the L3 gateway.

Communicating with Outside Hosts

Everything up until now is quite simple, but it’s possible to conceive of situations where
endpoints in our network need to communicate over the internet or with other endpoints
outside the overlay network. There are two broad approaches for handling this. In both
cases, we allow such access only via layer 3 communication.

First, we can map physical interfaces on an OVS system into the overlay network. If a
router interface is attached either directly to a physical interface or indirectly via an
isolated network, then the router interface can be easily exposed as an endpoint in the
network. Endpoints can then communicate with this router interface (perhaps after some
intermediate routing via the distributed routing scheme described above) and from there
get to the rest of the world. Dedicated OVS systems can be thus configured as gateway
devices into the overlay network which will then be needed for any of this north/south

OpenDaylight Developer Guide March 4, 2015 master

176

communication. This has the advantage of being very conceptually simple but requires
special effort to load balance the traffic effectively.

Second, we can use a DNAT scheme to allow access to endpoints that are reachable via
the underlay network. In this scheme, for every endpoint that is allowed to communicate
to these outside hosts, we allocate an IP address from a dedicated set of subnets on the
underlay (each network segment in the underlay network will require a separate DNAT
range for switches attached to that subnet). We can perform the DNAT translation on
the OVS switch and then simply deliver the traffic to the underlay network to deliver to
the internet host or other host, and perform the reverse translation to get back into the
overlay network.

Figure 8.8. GBP OVS Example of Communication With Outside Endpoints

An example of communication with outside endpoints using the DNAT scheme is shown in
the figure above. In this example, the red endpoint is communicating with an endpoint on
the internet through a gateway router. The traffic goes through a DNAT translation to an
IP allocated to the endpoint for this purpose. The IP communication can then be delivered
through the IP underlay network.

For the first implementation, we’ll stick with the DNAT scheme and consider implementing
the gateway-based or other solution.

OpenDaylight Developer Guide March 4, 2015 master

177

Packet Processing Pipeline

Figure 8.9. GBP OVS Packet Processing Pipeline

Here is a simplified high-level view of what happens to packets in this network when it hits
an OVS instance:

1. If data and management network are shared, determine whether packet is targeted for
the host system. If so, reinject into host networking stack.

2. Apply port security rules if enabled on the port to determine if the source identifiers
(MAC and IP) are allowed on the port

• For packets received from the overlay: Determine the source endpoint group (sEPG)
based on the tunnel ID from the outer packet header.

• For packets received from local ports: Determine sEPG based on source port and
source identifiers as configured.

• As an sEPG can only be associated with a single L2 and L3 context, the context is
determined in this step as well.

• Unknown source identifiers may result in a packet-in if the network is doing learning.

3. Handle broadcast and multicast packets while respecting broadcast domains.

4. Catch any special packet types that are handled specially. This could include ARP, DHCP,
or LLDP. How these are handled may depend on the specific renderer implementation.

5. Determine whether the packet will be bridged or routed. If the destination MAC address
is the default gateway MAC, then the packet will be routed, otherwise it will be bridged.

OpenDaylight Developer Guide March 4, 2015 master

178

6. Determine the destination endpoint group (dEPG) and outgoing port or next hop while
respecting the L2/L3 context.

• For bridged packets (L2): Determine based on the destination MAC address.

• For routed packets (L3): Determine based on the destination IP address.

7. Apply the appropriate set of policy rules based on the active subjects for that flow. We
can bypass this step if the tunnel metadata indicates hat the policy has been applied at
the source.

8. Apply a routing action if needed by modifying the destination and source MAC and
decrementing the TTL.

• For local destination: Rewrite the destination MAC to the MAC address for the
connected endpoint, source MAC to the MAC of the default gateway.

• For remote destinations: Rewrite the destination MAC to the MAC of the next hop,
source MAC to the MAC of the default gateway.

9. If the next hop is a local port, then it is delivered as-is. If the next hop is not local, then
the packet is encapsulated and the tunnel ID is set to the network identifier for the
source endpoint group (sEPG). If the packet is a layer 2 broadcast packet, then it will
need to be written to the correct set of ports, which might be a combination of local and
multiple remote tunnel endpoints.

Register Usage

The processing pipeline needs to store metadata such as the sEPG, dEPG, and broadcast
domain. This metadata can be stored in any way supported by the switch. OpenFlow
provides a dedicated 64 bit metadata field, Open vSwitch additionally provides multiple 32
bit registers in form of Nicira Extensions. The following examples will use Nicira extensions
for simplicity. The choice of register usage is an implementation detail of the renderer.

Option 1: Register allocation using Nicira Extensions

Register Value

NXM_NX_REG1 Source Endpoint Group (sEPG) ID

NXM_NX_REG2 L2 context (BD)

NXM_NX_REG3 Destination Endpoint Group (dEPG) ID

NXM_NX_REG4 Port number to send packet to after policy enforcement. This is required because port
selection occurs before policy enforcement in the pipeline.

NXM_NX_REG5 L3 context ID (VRF)

Option 2: Register allocation using OpenFlow metadata

OpenFlow offers a single 64 bit register which can be used to store sEPG, dEPG, and BD
throughout the lookup process alternatively. The advantage over using Nicira extensions is
better portability and offload capability to hardware.

Register Value

metadata[0..15] Source Endpoint Group (sEPG) ID

metadata[16..31] Destination Endpoint Group (dEPG) ID

OpenDaylight Developer Guide March 4, 2015 master

179

Register Value

metadata[32..39] L2 context (BD)

metadata[40..47] L3 context (VRF)

metadata[48..63] Port number to send packet to after policy enforcement. This is required because port
selection occurs before policy enforcement in the pipeline.

Table/Pipeline Names and Order

In order to increase readability, the following table names are used in the following
sections. Their order in the pipeline is as follows:

Table ID Description Flow Hit Flow Miss

1 PORT_SECURITY Optional port
security table

Proceed to SEPG_FILTER Drop

2 SEPG_FILTER sEPG selection Remember sEPG, BD, and VRF.
Then proceed to DEPG_FILTER

Trigger policy resolution
(send to controller)

3 DPEG_FILTER dEPG selection Remember dEPG and output
coordinates, proceed to
POLICY_ENFORCER

Trigger policy resolution
(send to controller)

4 POLICY_ENFORCER Policy enforcement Forward packet Drop

OpenFlow >=1.1 capable switches can implement the flow miss policy for each table
directly. Pure OpenFlow 1.0 switches will need to have a catch-all flow inserted to enforce
the specified policy.

Port Security

An optional port security table can be inserted at the very beginning of the pipeline. It
enforces a list of valid sMAC and sIP addresses for a specific port.

priority=30, in_port=TUNNEL_PORT, actions=goto_table:SEPG_FILTER
priority=30, in_port=PORT1, dl_src=MAC1, action=goto_table:SEPG_FILTER
priority=30, in_port=PORT2, dl_src=MAC2, ip, nw_src=IP2, actions=
goto_table:SEPG_FILTER
priority=20, in_port=PORT2, dl_src=MAC2, ip, actions=drop
priority=10, in_port=PORT2, dl_src=MAC2, actions=goto_table:SEPG_FILTER
priority=30, in_port=PORT3, actions=goto_table:SEPG_FILTER

The port-security flow-miss policy is set to drop in order for packets received on an
unknown port or with an unknown sMAC/sIP to be rejected.

The following modes of enforcement are defined:

1. Whitelisted: The port is allowed to use any addresses. All tunnel ports must be
whitelisted. The filter is enforced with a single flow matching on in_port and redirects to
the next table.

2. L2 enforcement: Any packet from the port must use a specific sMAC. The filter is
enforced with a single flow matching on the in_port and dl_src and redirects to the next
table.

3. L3 enforcement: Same as L2 enforcement. Additionally, any IP packet from the port
must use a specific sIP. The filter is enforced with three flows with different priority.

a. Any IP packet with correct sMAC and sIP is redirected to the next table.

OpenDaylight Developer Guide March 4, 2015 master

180

b. Any IP packet left over is dropped.

c. Any non-IP packet with correct sMAC is redirected to the next table.

Source EPG & L2/L3 Domain Selection

The sEPG is determined based on a separate flow table which maps known OpenFlow port
numbers and tunnel identifiers to a locally unique sEPG ID. The sEPG ID is stored in register
NXM_NX_REG1 for later use in the pipeline. At the same time, the L2 and L3 context is
determined and stored in register NXM_NX_REG2.

Field Description

table=SEPG_TABLE Flow must be in sEPG selection table

in_port=$OFPORT Flow must match on incoming port

tun_id=$VNI If in_port is a tunnel, flow must match on tunnel ID

The actions performed are:

1. Write sEPG ID corresponding to incoming port or tunnel ID to register

2. Write L2/L3 context ID corresponding to incoming port or tunnel ID to registers

3. Proceed to dEPG selection

An example flow to map a local port to an sEPG:

table=SEPG_FILTER, in_port=$OFPORT
actions=load:$SEPG->NXM_NX_REG1[],
 load:$BD->NXM_NX_REG2[],
 load:$VRF->NXM_NX_REG5[],
 goto_table:$DEPG_FILTER

An example flow to map a tunnel ID to an sEPG:

table=SEPG_FILTER, in_port=TUNNEL_PORT, tun_id=$VNI1,
actions=load:$SEPG1->NXM_NX_REG1[],
 load:$BD->NXM_NX_REG2[],
 load:$VRF->NXM_NX_REG5[],
 goto_table:$DEPG_FILTER

A flow hit means that the sEPG is known and the pipeline should proceed to the next stage.

A flow miss means that we have received a packet from an unknown EPG:

1. If the packet was received on a local port then this corresponds to the discovery of a
new EP for which the Port to EPG mapping has not been populated yet. If the network is
learned, generate a packet-in to trigger policy resolution, otherwise drop the packet.

2. If the packet was received from a tunnel then this corresponds to a packet for which
we have not populated the tunnel ID to EGP mapping yet. If the network is learned,
generate a packet-in to trigger policy resolution, otherwise drop the packet.

Broadcasting / Multicasting

Packets sent to the MAC broadcast address (ff:ff:ff:ff:ff:ff) must be flooded to all
ports belonging to the broadcast domain. This is not equivalent to the OVS flood action as

OpenDaylight Developer Guide March 4, 2015 master

181

multiple broadcast domains reside on the same switch. The respective broadcast domains
are modeled using OpenFlow group tables as follows:

1. Upon addition of a new broadcast domain to the local vSwitch:

• Create a new OpenFlow group table, using the BD ID as group ID

ovs-ofctl [...] add-group BRIDGE group_id=$BD, type=all

• Create a flow in the dEPG selection table matching on broadcast packets and correctly
have them flooded to all group members:

priority=10, table=$DEPG_TABLE, reg2=$BD, dl_dst=ff:ff:ff:ff:ff:ff,
 actions=group:$BD

2. Upon addition/removal of a local port

• Modify group and add/remove output action to port to account for membership
change:

osvs-ofctl [...] mod-group $BRIDGE [Old entry,] bucket=output:$PORT

3. Upon addition/removal of a non-local port to the BD

• Modify group and add/remove output + tunnel action to start/stop flooding packets
over overlay

Special Packet Types

ARP Responder

In order for the distributed L3 gateway to be reachable, the vSwitch must respond to ARP
requests sent to the default gateway address. For this purpose, a flow is added which
translates ARP requests into ARP replies and sends them back out the incoming port.

Field Description

priority=20 Must have higher priority than regular, non-ARP dEPG
table flows.

table=DEPG_FILTER Flow must be in dEPG selection table

reg5=2 Must match a specific L3 context (NXM_NX_REG5)

arp, arp_op=1 Packet must be ARP request

arp_tpa=GW_IP ARP request must be targeted for IP of gateway

The actions performed are:

1. Set dMAC to original sMAC of packet to reverse direction

2. Set sMAC to MAC of gateway

3. Set ARP operation to (arp-reply)

4. Set target hardware address to original source hardware address

5. Set source hardware address to MAC of gateway

OpenDaylight Developer Guide March 4, 2015 master

182

6. Set target protocol address to original source protocol address

7. Set source protocol address to IP of gateway

8. Transmit packet back out the incoming port

priority=20, table=DEPG_FILTER, reg5=$VRF,
arp, arp_op=1, arp_tpa=$GW_ADDRESS,
actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],
 mod_dl_src:$GW_MAC,
 load:2->NXM_OF_ARP_OP[],
 move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],
 load:''Hex(''$GW_MAC'')''->NXM_NX_ARP_SHA[],
 move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],
 load:''Hex(''$GW_ADDRESS'')''->NXM_OF_ARP_SPA[],
 in_port

ARP Optimization

Figure 8.10. GBP OVS ARP Optimization

As the MAC / IP pairing of endpoints is known in the network. ARP requests can be
optimized and translated into unicasts. While it is possible to have a local vSwitch become
an ARP responder directly, the unicast translation offers a minimal aliveness check within
the scope of the L2 context.

A flow is inserted into the sEPG selection table as follows:

priority=10, arp, arp_op=1, dl_dst=ff:ff:ff:ff:ff:ff, actions=controller

As the ARP request is received, the packet is sent to the controller. The controller/agent
resolves the MAC address to the IP address and inserts a new DNAT flow to translate
subsequent ARP requests for the same transport address directly in the vSwitch:

 priority=15, table=DEPG_FILTER,
 arp, arp_op=1, dl_dst=ff:ff:ff:ff:ff:ff,
 actions=mod_dl_dst:$MAC,
 load:${DEPG}->NXM_NX_REG3[],
 load:${OFPORT}->NXM_NX_REG4[],

OpenDaylight Developer Guide March 4, 2015 master

183

 goto_table:$ENFORCER_TABLE

The OFPORT is either a local port or the tunnel port. The latter case requires to additionally
set the tunnel ID as described in previous sections.

Note

The controller can proactively insert ARP optimization flows for local or even
remote endpoints to avoid the one time controller round trip penalty.

The controller/agent then reinjects the original ARP request back into the network via a
packet-out OpenFlow message.

Destination EPG Selection (L2)

The dEPG selection is performed after the sEPG has been determined. The mapping occurs
in its own flow table which contains both L2 and L3 flow entries. This section explains L2
processing, L3 processing is described in the next section.

The purpose of flow entries in this table is to map known destination MAC addresses in
a specific L2 context to a dEPG and to prepare the action set for execution after policy
enforcement.

Field Description

priority=10 Must have lower priority than L3 flows

table=DEPG_FILTER Flow must be in dEPG selection table

reg2=2 Must match on L2 context (NXM_NX_REG2)

dl_dst=MAC Packet must match on destination MAC of the EP

The actions performed are:

1. Write dEPG ID corresponding to dMAC to register to allow matching on it during policy
enforcement

2. Write expected outgoing port number to register. This can be a local or a tunnel port.

3. If outgoing port is a tunnel, also include an action to set the tunnel ID and tunnel
destination to map the sEPG to the tunnel ID.

4. Proceed to policy enforcement

Example flow for a local endpoint mapping:

table=$DEPG_FILTER, reg2=$BD, dl_dst=$MAC,
actions=load:$DEPG->NXM_NX_REG3[],
 load:$OFPORT->NXM_NX_REG4[],
 goto_table:$ENFORCER_TABLE

Example flow for a remote endpoint mapping:

table=$DEPG_FILTER, reg2=$BD, dl_dst=$MAC,
actions=load:$DEPG->NXM_NX_REG3[],
 load:$TUNNEL_PORT->NXM_NX_REG4[],
 move:NXM_NX_REG1[]->NXM_NX_TUN_ID[],
 load:$TUNNEL_DST->NXM_NX_TUN_IPV4_DST[],

OpenDaylight Developer Guide March 4, 2015 master

184

 goto_table:$ENFORCER_TABLE

A flow hit indicates that both the sEPG and dEPG are known at this point at the packet can
proceed to policy enforcement.

A flow miss indicates that the dEPG is not known. If the network is in learning mode,
generate a packet-in, otherwise drop the packet.

Destination EPG Selection (L3)

Much like L2 flows in the dEPG selection table, L3 flows map known destination IP
addresses to the corresponding dEPG and outgoing port number.

Additionally, flow hits will result in a routing action performed.

Field Description

priority=15 Must have higher priority than L2 but lower than ARP
flows.

table=DEPG_FILTER Flow must be in dEPG selection table

reg5=2 Must match on L3 context (NXM_NX_REG5)

dl_dst=GW_MAC Packet must match MAC of gateway

nw_dst=PREFIX Packet must match on a IP subnet

The actions performed are:

1. Write dEPG ID corresponding to destination subnet to register to allow matching on it
during policy enforcement

2. Write expected outgoing port number to register. This can be a local or a tunnel port

3. If outgoing port is a tunnel, also include an action to set the tunnel ID and tunnel
destination to map the sEPG to the tunnel ID.

4. Modify destination MAC to the nexthop. The nexthop can be the MAC of the EP or
another router.

5. Set source MAC to MAC of local default gateway

6. Decrement TTL

7. Proceed to policy enforcement

Example flow for a local endpoint over L3:

table=DEPG_TABLE, reg5=$VRF, dl_dst=$ROUTER_MAC, ip, nw_dst=$PREFIX,
actions=load:$DEPG->NXM_NX_REG3[],
 load:$OFPORT->NXM_NX_REG4[],
 mod_dl_dst:$DST_EP_MAC,
 mod_dl_src:$OWN_ROUTER_MAC,
 dec_ttl,
 goto_table:$POLICY_ENFORCER

Example flow for a remote endpoint over L3:

table=DEPG_TABLE, reg5=$VRF, dl_dst=$ROUTER_MAC, ip, nw_dst=$PREFIX,

OpenDaylight Developer Guide March 4, 2015 master

185

actions=load:$DEPG->NXM_NX_REG3[],
 load:$TUNNEL_PORT->NXM_NX_REG4[],
 move:NXM_NX_REG1[]->NXM_NX_TUN_ID[],
 load:$TUNNEL_DST->NXM_NX_TUN_IPV4_DST[],
 mod_dl_dst:$NEXTHOP,
 mod_dl_src:$OWN_ROUTER_MAC,
 dec_ttl,
 goto_table:$POLICY_ENFORCER

Policy Enforcement

Given the sEPG, BD/VRF, and dEPG are known at this point, the policy is enforced in a
separate flow table by matching on the sEPG and dEPG as found in the respective registers.
Additional filters may be provided as specified by the policy.

Field Description

table=POLICY_ENFORCER Flow must be in policy enforcement table.

reg1=$SEPG Must match on sEPG of packet

reg3=$DEPG Must match on dEPG of packet

The policy may require to match on additional fields such as L3 ports, TCP flags, labels,
conditions, etc.

The actions performed on flow hit depend on the specified policy and are described in the
next section.

Example of a flow in the policy enforcement table:

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG, tcp_dst=DPORT/MASK,
actions=output:NXM_NX_REG4[]

A flow miss indicates that no policy has been specified or the policy has not been
populated. Depending on whether the policy population is proactive or reactive, the
action on flow miss is either drop or notification of the controller/agent to trigger policy
resolution.

Policy Actions & Packet Rewrite

The policy may specify multiple actions which are to be performed on matching policy
classifiers. The following actions are supported:

Accept

Forward/route the packet as previously selected in the dEPG selection table. This translates
to executing the queued up action set and forwarding the packet to the port number
stored in NXM_NX_REG4 which represents the L2 nexthop.

Basic example flow to allow an sEPG talk to a dEPG:

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=output:NXM_NX_REG4[]

Drop

Disregard any previous forwarding or routing decision and drop the packet:

OpenDaylight Developer Guide March 4, 2015 master

186

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=clear_actions, drop

Log

The logging action is an extension to the drop action. It will send packet to the controller
for logging purposes. The controller will then drop the packet.

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=clear_actions, controller:[...]

Set QoS

The Set QoS action allows to modify the QoS mark of a packet. This includes the DiffServ
field as well as ECN information. Note that this action may only be applied to IP packets.

This action is typically followed by an allow or redirect action.

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=mod_nw_tos:TOS, mod_nw_ecn:ECN, ...

Redirect / Service Redirection

Service insertion or redirection can be defined as an action between EPGs in the policy. It
may occur transparently, i.e. without changing the packet in any way, or non-transparently
by explicitly redirecting the packet to the service node.

Non-transparent Service Insertion

Non-transparent service insertion is used to redirect packets to a service such as a web
proxy which requires the packet to be addressed to the service. The vSwitch forwarding
behavior to achieve this is identical to a L2/L3 switching/routing action to any other EP.

The specific action chain will depend on whether the service is located within the same BD
or whether routing is required. The controller/agent is aware of the location of both EPs
and will insert the required action set. The following is an example for a L2 non-transparent
service redirection:

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=mod_dl_dst:$MAC_OF_SERVICE,
 load:$TUNNEL_PORT->NXM_NX_REG4[],
 move:NXM_NX_REG1[]->NXM_NX_TUN_ID[],
 load:$TUNNEL_DST->NXM_NX_TUN_IPV4_DST[],
 action:output:NXM_NX_REG4[]

Transparent Service Insertion

Transparent service insertion is used to redirect packets to a service such as a firewall which
does not require a packet to be specifically addressed to the service. The service will be
applied to all packets on the virtual network. This requires that the service only sees packets
to which the service should be applied.

The required forwarding behavior is to encapsulate the packet with the appropriate VNID.
There is no need to rewrite any of the L2 headers.

table=$POLICY_ENFORCER reg1=$SEPG, reg3=$DEPG,
actions=load:$TUNNEL_PORT->NXM_NX_REG4[],

OpenDaylight Developer Guide March 4, 2015 master

187

 move:$VNI_OF_SERVICE->NXM_NX_TUN_ID[],
 load:$TUNNEL_DST->NXM_NX_TUN_IPV4_DST[],
 output:$NXM_NX_REG4[]

The redirect action in the policy will specify the VNID and VTEP to be used.

TBD: Does the pipeline always stop after a redirect action has been processed?

Mirror

This action causes the packet to be cloned and forwarded to an additional port (port
mirroring).

OpenFlow/OVS Renderer

The OpenFlow renderer is based on the OVS Overlay design and implements a network
virtualization solution for virtualized compute environments using Open vSwitch,
OpenFlow and OVSDB remotely from the controller.

The OpenFlow renderer architecture consists of the following:

Switch Manager Manage connected switch configuration using OVSDB.
Maintain overlay tunnels.

Endpoint Manager Optionally learn endpoints based on simple rules that map
interfaces to endpoint groups. Can add additional rules in
the future. Keep endpoint registry up to date. If disabled,
then an orchestration system must program all endpoints and
endpoint mappings.

ARP and DHCP Manager Convert ARP and DHCP into unicast.

Policy Manager Subscribe to renderer common infrastructure, and switch and
endpoint manager. Manage the state of the flow tables in
OVS.

OpFlex Renderer

The OpFlex renderer is based on the OVS Overlay design and implements a network
virtualization solution for virtualized compute environments by communicating with the
OpFlex Agent.

The OpFlex renderer architecture consists of the following main pieces:

Agent Manager Manage connected agents using OpFlex.

RPC Library Manage serialization/deserialization of JSON RPC with Policy
Elements.

OpFlex Messaging Provides definition of OpFlex messages and serialization/
deserialization into Managed Objects.

Endpoint manager Optionally learn endpoints based on simple rules that map
interfaces to endpoint groups. Can add additional rules in the

OpenDaylight Developer Guide March 4, 2015 master

188

future. Keep endpoint registry up to date. If disabled, then an
orchestration system must program all endpoints and endpoint
mappings.

Policy manager Subscribe to renderer common infrastructure and endpoint registry
and provide normalized policy to agents.

OpenDaylight Developer Guide March 4, 2015 master

189

9. L2Switch

Table of Contents
Checking out the L2Switch project .. 189
Testing your changes to the L2Switch project .. 189
Architecture of the L2Switch project .. 190
Developer’s Guide for Packet Dispatcher ... 191
Developer’s Guide for Loop Remover .. 191
Developer’s Guide for Arp Handler .. 193
Developer’s Guide for Address Tracker .. 195
Developer’s Guide for Host Tracker ... 197
Developer’s Guide for L2Switch Main .. 197

The L2Switch project provides Layer2 switch functionality.

Checking out the L2Switch project
git clone https://git.opendaylight.org/gerrit/p/l2switch.git

The above command will create a directory called "l2switch" with the project.

Testing your changes to the L2Switch project

Running the L2Switch project

To run the base distribution, you can use the following command

./distribution/base/target/distributions-l2switch-base-0.1.0-SNAPSHOT-
osgipackage/opendaylight/run.sh

If you need additional resources, you can use these command line arguments:

-Xms1024m -Xmx2048m -XX:PermSize=512m -XX:MaxPermSize=1024m'

To run the karaf distribution, you can use the following command:

./distribution/karaf/target/assembly/bin/karaf

Create a network using mininet
sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3 switches. Each switch will
connect to the controller located at the specified IP, i.e. 127.0.0.1

OpenDaylight Developer Guide March 4, 2015 master

190

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13

The above command has the "mac" option, which makes it easier to distinguish between
Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet
h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Miscellaneous mininet commands
link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

Architecture of the L2Switch project
• Packet Handler

• Decodes the packets coming to the controller and dispatches them appropriately

• Loop Remover

• Removes loops in the network

• Arp Handler

• Handles the decoded ARP packets

• Address Tracker

• Learns the Addresses (MAC and IP) of entities in the network

• Host Tracker

• Tracks the locations of hosts in the network

• L2Switch Main

• Installs flows on each switch based on network traffic

OpenDaylight Developer Guide March 4, 2015 master

191

Developer’s Guide for Packet Dispatcher

Classes

• AbstractPacketDecoder

• Defines the methods that all decoders must implement

• EthernetDecoder

• The base decoder which decodes the packet into an Ethernet packet

• ArpDecoder, Ipv4Decoder, Ipv6Decoder

• Decodes Ethernet packets into the either an ARP or IPv4 or IPv6 packet

Further development

There is a need for more decoders. A developer can write

• A decoder for another EtherType, i.e. LLDP.

• A higher layer decoder for the body of the IPv4 packet or IPv6 packet, i.e. TCP and UDP.

How to write a new decoder

• extends AbstractDecoder<A, B>

• A refers to the notification that the new decoder consumes

• B refers to the notification that the new decoder produces

• implements xPacketListener

• The new decoder must specify which notification it is listening to

• canDecode method

• This method should examine the consumed notification to see whether the new
decoder can decode the contents of the packet

• decode method

• This method does the actual decoding of the packet

Developer’s Guide for Loop Remover

Classes

• LoopRemoverModule

• Reads config subsystem value for is-install-lldp-flow

OpenDaylight Developer Guide March 4, 2015 master

192

• If is-install-lldp-flow is true, then an InitialFlowWriter is created

• Creates and initializes the other LoopRemover classes

• InitialFlowWriter

• Only created when is-install-lldp-flow is true

• Installs a flow, which forwards all LLDP packets to the controller, on each switch

• TopologyLinkDataChangeHandler

• Listens to data change events on the Topology tree

• When these changes occur, it waits graph-refresh-delay seconds and then tells
NetworkGraphImpl to update

• Writes an STP (Spanning Tree Protocol) status of "forwarding" or "discarding" to each
link in the Topology data tree

• Forwarding links can forward packets.

• Discarding links cannot forward packets.

• NetworkGraphImpl

• Creates a loop-free graph of the network

Configuration

• graph-refresh-delay

• Used in TopologyLinkDataChangeHandler

• A higher value has the advantage of doing less graph updates, at the potential cost of
losing some packets because the graph didn’t update immediately.

• A lower value has the advantage of handling network topology changes quicker, at
the cost of doing more computation.

• is-install-lldp-flow

• Used in LoopRemoverModule

• "true" means a flow that sends all LLDP packets to the controller will be installed on
each switch

• "false" means this flow will not be installed

• lldp-flow-table-id

• The LLDP flow will be installed on the specified flow table of each switch

• lldp-flow-priority

OpenDaylight Developer Guide March 4, 2015 master

193

• The LLDP flow will be installed with the specified priority

• lldp-flow-idle-timeout

• The LLDP flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• lldp-flow-hard-timeout

• The LLDP flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

Further development

No suggestions at the moment.

Validating changes to Loop Remover

STP Status information is added to the Inventory data tree.

• A status of "forwarding" means the link is active and packets are flowing on it.

• A status of "discarding" means the link is inactive and packets are not sent over it.

The STP status of a link can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/
node/openflow:1/node-connector/openflow:1:2

The STP status should still be there after changes are made.

Developer’s Guide for Arp Handler

Classes

• ArpHandlerModule

• Reads config subsystem value for is-proactive-flood-mode

• If is-proactive-flood-mode is true, then a ProactiveFloodFlowWriter is created

• If is-proactive-flood-mode is false, then an InitialFlowWriter is created

• ProactiveFloodFlowWriter

• Only created when is-proactive-flood-mode is true

• Installs a flood flow on each switch. With this flood flow, a packet that doesn’t match
any other flows will be flooded/broadcast from that switch.

• InitialFlowWriter

OpenDaylight Developer Guide March 4, 2015 master

194

• Only created when is-proactive-flood-mode is false

• Installs a flow, which sends all ARP packets to the controller, on each switch

• ArpPacketHandler

• Only created when is-proactive-flood-mode is false

• Handles and processes the controller’s incoming ARP packets

• Uses PacketDispatcher to send the ARP packet back into the network

• PacketDispatcher

• Only created when is-proactive-flood-mode is false

• Sends packets out to the network

• Uses InventoryReader to determine which node-connector to a send a packet on

• InventoryReader

• Only created when is-proactive-flood-mode is false

• Maintains a list of each switch’s node-connectors

Configuration
• is-proactive-flood-mode

• "true" means that flood flows will be installed on each switch. With this flood flow,
each switch will flood a packet that doesn’t match any other flows.

• Advantage: Fewer packets are sent to the controller because those packets are
flooded to the network.

• Disadvantage: A lot of network traffic is generated.

• "false" means the previously mentioned flood flows will not be installed. Instead an
ARP flow will be installed on each switch that sends all ARP packets to the controller.

• Advantage: Less network traffic is generated.

• Disadvantage: The controller handles more packets (ARP requests & replies) and the
ARP process takes longer than if there were flood flows.

• flood-flow-table-id

• The flood flow will be installed on the specified flow table of each switch

• flood-flow-priority

• The flood flow will be installed with the specified priority

• flood-flow-idle-timeout

OpenDaylight Developer Guide March 4, 2015 master

195

• The flood flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• flood-flow-hard-timeout

• The flood flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

• arp-flow-table-id

• The ARP flow will be installed on the specified flow table of each switch

• arp-flow-priority

• The ARP flow will be installed with the specified priority

• arp-flow-idle-timeout

• The ARP flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• arp-flow-hard-timeout

• The ARP flow will timeout (removed from the switch) after arp-flow-hard-timeout
seconds, regardless of how many packets it is forwarding

Further development

The ProactiveFloodFlowWriter needs to be improved. It does have the advantage of
having less traffic come to the controller; however, it generates too much network traffic.

Developer’s Guide for Address Tracker

Classes

• AddressTrackerModule

• Reads config subsystem value for observe-addresses-from

• If observe-addresses-from contains "arp", then an AddressObserverUsingArp is created

• If observe-addresses-from contains "ipv4", then an AddressObserverUsingIpv4 is created

• If observe-addresses-from contains "ipv6", then an AddressObserverUsingIpv6 is created

• AddressObserverUsingArp

• Registers for ARP packet notifications

• Uses AddressObservationWriter to write address observations from ARP packets

• AddressObserverUsingIpv4

OpenDaylight Developer Guide March 4, 2015 master

196

• Registers for IPv4 packet notifications

• Uses AddressObservationWriter to write address observations from IPv4 packets

• AddressObserverUsingIpv6

• Registers for IPv6 packet notifications

• Uses AddressObservationWriter to write address observations from IPv6 packets

• AddressObservationWriter

• Writes new Address Observations to the Inventory data tree

• Updates existing Address Observations with updated "last seen" timestamps

• Uses the timestamp-update-intervval configuration variable to determine whether or
not to update

Configuration

• timestamp-update-interval

• A last-seen timestamp is associated with each address. This last-seen timestamp will
only be updated after timestamp-update-interval milliseconds.

• A higher value has the advantage of performing less writes to the database.

• A lower value has the advantage of knowing how fresh an address is.

• observe-addresses-from

• IP and MAC addresses can be observed/learned from ARP, IPv4, and IPv6 packets. Set
which packets to make these observations from.

Further development

Further improvements can be made to the AddressObservationWriter so that it (1)
doesn’t make any unnecessary writes to the DB and (2) is optimized for multi-threaded
environments.

Validating changes to Address Tracker

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a browser or a
REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/
node/openflow:1/node-connector/openflow:1:1

The Address Observations should still be there after changes.

OpenDaylight Developer Guide March 4, 2015 master

197

Developer’s Guide for Host Tracker

Validationg changes to Host Tracker
Host information is added to the Topology data tree.

• Host address

• Attachment point (link) to a node/switch

This host information and attachment point information can be checked through a browser
or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-
topology/topology/flow:1/

Host information should still be there after changes.

Developer’s Guide for L2Switch Main

Classes
• L2SwitchMainModule

• Reads config subsystem value for is-install-dropall-flow

• If is-install-dropall-flow is true, then an InitialFlowWriter is created

• Reads config subsystem value for is-learning-only-mode

• If is-learning-only-mode is false, then a ReactiveFlowWriter is created

• InitialFlowWriter

• Only created when is-install-dropall-flow is true

• Installs a flow, which drops all packets, on each switch. This flow has low priority and
means that packets that don’t match any higher-priority flows will simply be dropped.

• ReactiveFlowWriter

• Reacts to network traffic and installs MAC-to-MAC flows on switches. These flows have
matches based on MAC source and MAC destination.

• Uses FlowWriterServiceImpl to write these flows to the switches

• FlowWriterService / FlowWriterServiceImpl

• Writes flows to switches

Configuration
• is-install-dropall-flow

OpenDaylight Developer Guide March 4, 2015 master

198

• "true" means a drop-all flow will be installed on each switch, so the default action will
be to drop a packet instead of sending it to the controller

• "false" means this flow will not be installed

• dropall-flow-table-id

• The dropall flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-priority

• The dropall flow will be installed with the specified priority

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-idle-timeout

• The dropall flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-hard-timeout

• The dropall flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• is-learning-only-mode

• "true" means that the L2Switch will only be learning addresses. No additional flows to
optimize network traffic will be installed.

• "false" means that the L2Switch will react to network traffic and install flows on the
switches to optimize traffic. Currently, MAC-to-MAC flows are installed.

• reactive-flow-table-id

• The reactive flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-learning-only-mode" is set to "false"

• reactive-flow-priority

• The reactive flow will be installed with the specified priority

• This field is only relevant when "is-learning-only-mode" is set to "false"

• reactive-flow-idle-timeout

• The reactive flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

OpenDaylight Developer Guide March 4, 2015 master

199

• This field is only relevant when "is-learning-only-mode" is set to "false"

• reactive-flow-hard-timeout

• The reactive flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

• This field is only relevant when "is-learning-only-mode" is set to "false"

Further development

The ReactiveFlowWriter needs to be improved to install the MAC-to-MAC flows faster. For
the first ping, the ARP request and reply are successful. However, then the ping packets
are sent out. The first ping packet is dropped sometimes because the MAC-to-MAC flow
isn’t installed quickly enough. The second, third, and following ping packets are successful
though.

OpenDaylight Developer Guide March 4, 2015 master

200

10. Lisp Flow Mapping

Table of Contents
OpenDaylight Locator/ID Separation Protocol (LISP) Flow Mapping Overview 200
LISP Flow Mapping Service .. 201
LISP Service Architecture .. 201
LISP APIs ... 203
LISP Configuration Options .. 203
Developer Tutorial ... 203
LISP Support .. 210
Installing LISP Flow Mapping ... 210

OpenDaylight Locator/ID Separation Protocol
(LISP) Flow Mapping Overview

Locator/ID Separation Protocol (LISP) is a technology that provides a flexible map-and-
encap framework that can be used for overlay network applications such as data center
network virtualization and Network Function Virtualization (NFV).

LISP provides the following name spaces:

• Endpoint Identifiers (EIDs)

• Routing Locators (RLOCs)

In a virtualization environment EIDs can be viewed as virtual address space and RLOCs can
be viewed as physical network address space.

The LISP framework decouples network control plane from the forwarding plane by
providing:

• A data plane that specifies how the virtualized network addresses are encapsulated in
addresses from the underlying physical network.

• A control plane that stores the mapping of the virtual-to-physical address spaces and the
associated forwarding policies and serves this information to the data plane on demand.

Network programmability is achieved by programming forwarding policies such as
transparent mobility, service chaining, and traffic engineering in the mapping system;
where the data plane elements can fetch these policies on demand as new flows arrive. This
chapter describes the LISP Flow Mapping project in OpenDaylight and how it can be used
to enable advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at LISPmob.org in the open source community
on the following platforms:

• Linux

http://tools.ietf.org/html/rfc6830
http://tools.ietf.org/html/rfc6830#page-6
http://tools.ietf.org/html/rfc6830#section-3
http://LISPmob.org/

OpenDaylight Developer Guide March 4, 2015 master

201

• Android

• OpenWRT

For more details and support for LISP data plane software please visit the LISPmob web
site.

LISP Flow Mapping Service
The LISP Flow Mapping service provides LISP Mapping System services. This includes LISP
Map-Server and LISP Map-Resolver services to store and serve mapping data to data plane
nodes as well as to OpenDaylight applications. Mapping data can include mapping of
virtual addresses to physical network address where the virtual nodes are reachable or
hosted at. Mapping data can also include a variety of routing policies including traffic
engineering and load balancing. To leverage this service, OpenDaylight applications and
services can use the northbound REST API to define the mappings and policies in the LISP
Mapping Service. Data plane devices capable of LISP control protocol can leverage this
service through a southbound LISP plugin via the LISP control protocol (Map-Register, Map-
Request, Map-Reply messages).

The following figure depicts the described components:

Figure 10.1. Architecture Overview

LISP Service Architecture
The following figure shows the various LISP Flow Mapping modules.

http://LISPmob.org/
http://LISPmob.org/

OpenDaylight Developer Guide March 4, 2015 master

202

Figure 10.2. LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

• DAO: This layer separates the LISP logic from the database, so that we can separate the
map server and map resolver from the specific implementation of the DHT (Distributed
Hash Table). Currently we have an implementation of this layer with the controller
cluster service as a DHT, but it can be switched to any other DHT and you only need to
implement the ILISPDAO interface.

• Map Server: This module processes the adding or registration of keys and mappings. For
a detailed specification of LISP Map Server, see LISP.

• Map Resolver: This module receives and processes the mapping lookup queries and
provides the mappings to requester. For a detailed specification of LISP Map Server, see
LISP.

• Northbound API: This is part of the ODL northbound API. This module enables defining
key-EID associations as well as adding mapping information through the Map Server.
Key-EID associations can also be queried via this API. The Northbound API also provides
capability of querying the mapping information for an EID prefix.

• Neutron: This module implements the ODL Neutron Service APIs. It provides integration
between the LISP service and the ODL Neutron service.

• NETCONF: This module enables the LISP service to communicate to NETCONF-enabled
devices through ODL’s NETCONF plugin.

• Java API: The API module exposes the Map Server and Map Resolver capabilities via Java
API.

• LISP Southbound Plugin: This plugin enables data plane devices that support LISP
control plane protocol (see LISP) to register and query mappings to the LISP Flow
Mapping via the LISP control plane protocol.

http://tools.ietf.org/search/rfc6830
http://tools.ietf.org/search/rfc6830

OpenDaylight Developer Guide March 4, 2015 master

203

LISP APIs
The LISP Flow Mapping service has JAVA APIs and REST APIs. The Java API reference
documentation is auto-generated from the Java build and is available at:

• JAVA APIs

Below you will find the detailed information about the module’s REST resources and their
verbs (description, URI, parameters, responses, and status codes), schemas, example XML,
example JSON, as well as programming examples.

• REST APIS

LISP Configuration Options
The etc/custom.properties file in the Karaf distribution allows configuration of
several OpenDaylight parameters. The LISP service has two properties that can be adjusted:
lisp.mappingOverwrite and lisp.smr.

lisp.mappingOverwrite (default:
true)

Configures handling of mapping updates. When set
to true (default) a mapping update (either through
the southbound plugin via a Map-Register message or
through a northbound API PUT REST call) the existing
RLOC set associated to an EID prefix is overwritten.
When set to false, the RLOCs of the update are merged
to the existing set.

lisp.smr (default: false) Enables/disables the Solicit-Map-Request (SMR)
functionality. SMR is a method to notify changes in an
EID-to-RLOC mapping to "subscribers". The LISP service
considers all Map-Request’s source RLOC as a subscriber
to the requested EID prefix, and will send an SMR
control message to that RLOC if the mapping changes.

Developer Tutorial
This section provides instructions to set up a LISP network of three nodes (one "client"
node and two "server" nodes) using LISPmob and Open vSwitch (OVS) as data plane LISP
nodes and the LISP Flow Mapping project from ODL as the LISP programmable mapping
system for the LISP network. The steps shown below will demonstrate performing a failover
between the two "server" nodes. The three LISP data plane nodes and the LISP mapping
system are assumed to be running in Linux virtual machines using the following IPv4
addresses on their eth0 interfaces (please adjust configuration files, JSON examples, etc.
accordingly if you’re using another addressing scheme):

Table 10.1. Nodes in the tutorial

Node Node Type IP Address

controller OpenDaylight 10.33.12.32

client LISPmob 10.33.12.35

server1 LISPmob 10.33.12.37

https://jenkins.opendaylight.org/lispflowmapping/job/lispflowmapping-merge-develop/247/artifact/target/apidocs/index.html
https://jenkins.opendaylight.org/lispflowmapping/job/lispflowmapping-merge-develop/247/artifact/mappingservice/northbound/target/site/wsdocs/index.html
http://tools.ietf.org/html/rfc6830#section-6.6.2

OpenDaylight Developer Guide March 4, 2015 master

204

Node Node Type IP Address

server2 Open vSwitch 10.33.12.44

Note

While the tutorial uses LISPmob and OVS as the data plane, they could be any
LISP-enabled HW or SW router (commercial/open source).

The below steps are using the command line tool cURL to talk to the LISP Flow Mapping
northbound REST API. This is so that you can see the actual request URLs and body content
on the page.

Note

It is more convenient to use the Postman Chrome browser plugin to edit
and send the requests. The project git repository hosts a collection of the
requests that are used in this tutorial in the resources/tutorial/
ODL_Summit_LISP_Demo.json file. You can import this file to Postman by
following Collections#Import a collection#Import from URL and then entering
the following link: https://git.opendaylight.org/gerrit/gitweb?
p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/
ODL_Summit_LISP_Demo.json;hb=refs/heads/develop. Alternatively,
you can save the file on your machine, or if you have the repository checked
out, you can import from there. You will need to define some variables to point
to your OpenDaylight controller instance.

Note

It is assumed that commands are executed as the root user.

Note

To set up a basic LISP network overlay (no fail-over) without dealing with OVS,
you can skip steps 7 and 8 and just use LISPmob as your dataplane. If you do
want to test fail-over, but not using OVS, skip steps 7 and 8, but set up LISPmob
on server2 as well, with identical configuration.

1. Install and run OpenDaylight Helium release on the controller VM. Please follow the
general OpenDaylight Helium Installation Guide for this step. Once the OpenDaylight
controller is running install the odl-openflowplugin-all, odl-adsal-compatibility-all, odl-
ovsdb-all, and odl-lispflowmapping-all features from the CLI:

feature:install odl-openflowplugin-all odl-adsal-compatibility-all odl-
ovsdb-all odl-lispflowmapping-all

Note

If you’re not planning on using OVS you can skip the first three and install
odl-lispflowmapping-all only.

It takes quite a while to load and initialize all features and their dependencies. It’s worth
running the command log:tail in the Karaf console to see when is the log output
winding down, and continue after that.

https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/ODL_Summit_LISP_Demo.json;hb=refs/heads/develop
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/ODL_Summit_LISP_Demo.json;hb=refs/heads/develop
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/ODL_Summit_LISP_Demo.json;hb=refs/heads/develop

OpenDaylight Developer Guide March 4, 2015 master

205

2. Install LISPmob on the client and server1 VMs following the installation instructions
from the LISPmob README file.

3. Configure the LISPmob installations from the previous step. Starting from the
lispd.conf.example file in the distribution, set the EID in each lispd.conf
file from the IP address space selected for your virtual/LISP network. In this tutorial
the EID of the client is set to 1.1.1.1/32, and that of server1 to 2.2.2.2/32. Set the
RLOC interface in each lispd.conf. LISP will determine the RLOC (IP address of the
corresponding VM) based on this interface. Set the Map-Resolver address to the IP
address of the controller, and on the client the Map-Server too. On server1 set the
Map-Server to something else, so that it doesn’t interfere with the mappings on the
controller, since we’re going to program them manually. Modify the "key" parameter
in each lispd.conf file to a key/password of your choice, asdf in this tutorial. The
resources/tutorial directory in the develop branch of the project git repository has
the files used in the tutorial checked in: lispd.conf.client and lispd.conf.server1. Copy the
files to /root/lispd.conf on the respective VMs.

4. Define a key and EID prefix association in ODL using the northbound API for both EIDs
(1.1.1.1/32 and 2.2.2.2/32). Run the below commands on the controller (or any machine
that can reach controller, by replacing localhost with the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8080/lispflowmapping/nb/v2/default/key \
 --data @key1.json
curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8080/lispflowmapping/nb/v2/default/key \
 --data @key2.json

where the content of the key1.json and key2.json files is the following (with different
"ipAddress"):

{
 "key" : "asdf",
 "maskLength" : 32,
 "address" :
 {
 "ipAddress" : "1.1.1.1",
 "afi" : 1
 }
}

5. Verify that the key is added properly by requesting the following URL:

curl -u "admin":"admin" http://localhost:8080/lispflowmapping/nb/v2/default/
key/0/1/1.1.1.1/32
curl -u "admin":"admin" http://localhost:8080/lispflowmapping/nb/v2/default/
key/0/1/2.2.2.2/32

6. Run the lispd LISPmob daemon on the client and server1 VMs:

lispd -f /root/lispd.conf

7. Prepare the OVS environment on server2:

a. Start the ovsdb-server and ovs-vswitchd daemons (or check that your distribution’s init
scripts already started them)

https://github.com/LISPmob/lispmob#software-prerequisites
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/lispd.conf.client;hb=refs/heads/develop
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/lispd.conf.server1;hb=refs/heads/develop

OpenDaylight Developer Guide March 4, 2015 master

206

b. Start listening for OVSDB manager connections on the standard 6640 TCP port:

ovs-vsctl set-manager "ptcp:6640"
ovs-vsctl show

c. Create a TAP port for communications with the guest VM. We’ll have another VM
inside the server2 VM, that will be set up with the 2.2.2.2/24 EID. It also needs a
ficticious gateway, and a static ARP entry for that gateway, with any MAC address.

tunctl -t tap0
ifconfig tap0 up

d. Start the guest VM:

modprobe kvm
kvm -daemonize -vnc :0 -m 128 -net nic,macaddr=00:00:0C:15:C0:A1 \
 -net tap,ifname=tap0,script=no,downscript=no \
 -drive file=ubuntu.12-04.x86-64.20120425.static_ip_2.2.2.2.qcow2

8. Set up the OVS environment on server2 using the ODL northbound API

a. Connect to the OVSDB management port from ODL:

curl -u "admin":"admin" -X PUT \
 http://localhost:8080/controller/nb/v2/connectionmanager/node/
server2/address/10.33.12.44/port/6640

You can check if this and the next requests have the desired effect on OVS by running
the following on server2

ovs-vsctl show

It should now show the "Manager" connection as connected

b. Create the bridge br0:

curl -u "admin":"admin" -H "Content-type: application/json" -X POST \
 http://localhost:8080/controller/nb/v2/networkconfig/bridgedomain/
bridge/OVS/server2/br0 -d "{}"

c. Add tap0 to br0:

curl -u "admin":"admin" -H "Content-type: application/json" -X POST \
 http://localhost:8080/controller/nb/v2/networkconfig/bridgedomain/
port/OVS/server2/br0/tap0 -d "{}"

d. Add the lisp0 LISP tunneling virtual port to br0:

curl -u "admin":"admin" -H "Content-type: application/json" -X POST \
 http://localhost:8080/controller/nb/v2/networkconfig/bridgedomain/
port/OVS/server2/br0/lisp0 -d @lisp0.json

where lisp0.json has the following content:

OpenDaylight Developer Guide March 4, 2015 master

207

{
 "type": "tunnel",
 "tunnel_type": "lisp",
 "dest_ip": "10.33.12.35"
}

The dest_ip parameter sets the tunnel destination to the client VM. This has to be
done manually (from the controller), since OVS doesn’t have a LISP control plane to
fetch mappings.

e. We will now need to set up flows on br0 to to steer traffic received on the LISP
virtual port in OVS to the VM connected to tap0 and vice-versa. For that we will need
the node id of the bridge, which is based on its MAC address, which is generated at
creation time. So we look at the list of connections on the controller:

curl -u "admin":"admin" http://localhost:8080/controller/nb/v2/
connectionmanager/nodes

The response should look similar to this:

{"id":"00:00:62:71:36:30:7b:44","type":"OF"}]},
{"id":"10.33.12.35","type":"LISP"},{"id":"server2","type":"OVS"}]}

There are three types of nodes connected to ODL: one "OF" node (the OpenFlow
connection to br0 on server2), one "LISP" node (the client VM sending LISP Map-
Register control messages to the controller which is acting as a LISP Map-Server), and
one "OVS" node (this is the OVSDB connection to server2). We will need the id of the
"OF" node in order to set up flows.

f. The first flow will decapsulate traffic received from the client VM on server2 and send
it to the guest VM through the tap0 port.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8080/controller/nb/v2/flowprogrammer/default/node/
OF/00:00:62:71:36:30:7b:44/staticFlow/Decap -d @flow_decap.json

Make sure that the bridge id after the OF path component of the URL is the id from
the previous step. It should also be the same on line 6 in flow_decap.json file (see
below), which should have the MAC address of the KVM instance started on server2
on line 11 (SET_DL_DST):

{
 "installInHw": "true",
 "name": "Decap",
 "node": {
 "type": "OF",
 "id": "00:00:62:71:36:30:7b:44"
 },
 "priority": "10",
 "dlDst": "02:00:00:00:00:00",
 "actions": [
 "SET_DL_DST=00:00:0c:15:c0:a1",
 "OUTPUT=1"
]
}

OpenDaylight Developer Guide March 4, 2015 master

208

g. The second flow will encapsulate traffic received from the guest VM on server2
through the tap0 port.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8080/controller/nb/v2/flowprogrammer/default/node/
OF/00:00:62:71:36:30:7b:44/staticFlow/Encap -d @flow_encap.json

The flow_encap.json file should look like this:

{
 "installInHw": "true",
 "name": "Decap",
 "node": {
 "type": "OF",
 "id": "00:00:62:71:36:30:7b:44"
 },
 "priority": "5",
 "ingressPort": "1",
 "etherType": "0x0800",
 "vlanId": "0",
 "nwDst": "1.1.1.1/32",
 "actions": [
 "OUTPUT=2"
]
}

h. Check if the flows have been created correctly. First, in ODL

curl -u "admin":"admin" http://localhost:8080/controller/nb/v2/
flowprogrammer/default

And most importantly, on server2

ovs-ofctl dump-flows br0 -O OpenFlow13

9. The client LISPmob node should now register its EID-to-RLOC mapping in ODL. To verify
you can lookup the corresponding EIDs via the northbound API

curl -u "admin":"admin" http://localhost:8080/lispflowmapping/nb/v2/default/
mapping/0/1/1.1.1.1/32

10.Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the controller, pointing
to server1 and server2 with a higher priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8080/lispflowmapping/nb/v2/default/mapping \
 -d @mapping.json

where the mapping.json file looks like this

{
"key" : "asdf",
"mapregister" :
 {
 "proxyMapReply" : true,
 "eidToLocatorRecords" :
 [
 {
 "authoritative" : true,

OpenDaylight Developer Guide March 4, 2015 master

209

 "prefixGeneric" :
 {
 "ipAddress" : "2.2.2.2",
 "afi" : 1
 },
 "mapVersion" : 0,
 "maskLength" : 32,
 "action" : "NoAction",
 "locators" :
 [
 {
 "multicastPriority" : 1,
 "locatorGeneric" :
 {
 "ipAddress" : "10.33.12.37",
 "afi" : 1
 },
 "routed" : true,
 "multicastWeight" : 0,
 "rlocProbed" : false,
 "localLocator" : false,
 "priority" : 126,
 "weight" : 1
 } ,
 {
 "multicastPriority" : 1,
 "locatorGeneric" :
 {
 "ipAddress" : "10.33.12.44",
 "afi" : 1
 },
 "routed" : true,
 "multicastWeight" : 0,
 "rlocProbed" : false,
 "localLocator" : false,
 "priority" : 127,
 "weight" : 1
 }
],
 "recordTtl" : 5
 }
],
 "keyId" : 0
 }
}

Here the priority of the second RLOC (10.33.12.44 - server2) is 127, a higher numeric
value than the priority of 10.33.12.37, which is 126. This policy is saying that server1 is
preferred to server2 for reaching EID 2.2.2.2/32. Note that lower priority has higher
preference in LISP.

11.Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" http://localhost:8080/lispflowmapping/nb/v2/default/
mapping/0/1/2.2.2.2/32

12.Now the LISP network is up. To verify, log into the client VM and ping the server EID:

ping 2.2.2.2

OpenDaylight Developer Guide March 4, 2015 master

210

13.Let’s test fail-over now. Suppose you had a service on server1 which became unavailable,
but server1 itself is still reachable. LISP will not automatically fail over, even if the
mapping for 2.2.2.2/32 has two locators, since both locators are still reachable and uses
the one with the higher priority (lowest priority value). To force a failover, we need to
set the priority of server2 to a lower value. Using the file mapping.json above, swap the
priority values between the two locators and repeat the request from step 10. You can
also repeat step 11 to see if the mapping is correctly registered. Not that the previous
locators are still present, so you should see a list of four locators. If you leave the ping
on, and monitor the traffic using wireshark you can see that the ping traffic will be
diverted from server1 to server2.

With the default ODL configuration this may take some time, because the mapping
stays in the client map-cache until the TTL expires. LISP has a Solicit-Map-Request (SMR)
mechanism that can ask a LISP data plane element to update its mapping for a certain
EID. This is disabled by default, and is controlled by the lisp.smr variable in etc/
custom.porperties. When enabled, any mapping change from the northbound will
trigger an SMR packet to all data plane elements that have requested the mapping in a
certain time window.

If you used the Postman collection, you will notice an "ELP" mapping. This is for supporting
service chaining, but it requires a Re-encapsulating Tunnel Router (RTR). Support for RTR
functionality in LISPmob is in progress, and we will update the tutorial to demonstrate
service chaining when it becomes available.

LISP Support
For support please contact the lispflowmapping project at:

• Lisp Flow Mapping users mailing list: lispflowmapping-users@lists.opendaylight.org

• Lisp Flow Mapping dev mailing list: lispflowmapping-dev@lists.opendaylight.org

You can also reach us at the following channel on IRC:

• #opendaylight-lispflowmapping on irc.freenode.net

Additional information is also available on the wiki:

• Lisp Flow Mapping wiki

Installing LISP Flow Mapping
This chapter contains installation instructions for Locator ID Separation Protocol (LISP)
provides guidelines for installation from the lispflowmapping repository.

Setting up Gerritt

Code reviews are enabled through Gerrit. For setting up gerritt, see Set up Gerrit. >>>>>>>
a8dd6f1… added installation section into the lisp doc

http://tools.ietf.org/html/rfc6830#section-6.6.2
http://tools.ietf.org/html/rfc6830#section-6.6.2
mailto:lispflowmapping-users@lists.opendaylight.org
mailto:lispflowmapping-dev@lists.opendaylight.org
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Gerrit_Setup

OpenDaylight Developer Guide March 4, 2015 master

211

Note

You will need to perform the Gerrit Setup before you can access git via ssh as
described below.

Pulling code via Git CLI

Pull the code by cloning the LispFlowMapping repository.

 git clone ssh://<username>@git.opendaylight.org:29418/lispflowmapping.git

or if you just want to do an anonymous git clone, you can use:

 git clone https://git.opendaylight.org/gerrit/p/lispflowmapping.git

Setting up Gerrit Change-id Commit Message Hook

This command inserts a unique Change-Id tag in the footer of a commit message. This step
is optional but highly recommended for tracking changes.

 cd lispflowmapping
 scp -p -P 29418 <username>@git.opendaylight.org:hooks/commit-msg .git/hooks/
 chmod 755 .git/hooks/commit-msg

Install and setup gitreview. The instaructions can be found at here.

Hacking the Code

The following tasks are used to help you hack the code.

Setup Eclipse

1. Run Eclipse (Kepler is the current version).

2. Open Git Repository perspective.

3. Add an existing repository and choose the Lisp Flow Mapping repository that was pulled
earlier.

4. Import existing Maven projects and choose the following under the lispflowmapping
directory:

• api/pom.xl

• implementation/pom.xml

Build the code

 mvn clean install

To run without unitests you can skip building those tests running the following:

 mvn clean install -DskipTests

http://www.mediawiki.org/wiki/Gerrit/git-review#Installation%7Chere

OpenDaylight Developer Guide March 4, 2015 master

212

 /* instead of "mvn clean install" */

Run the controller

 cd distribution-karaf/target/assembly/bin
 ./karaf

At this point the ODL controller is running. Open a web browser and point your browser at
http://localhost:8080/

For complete documentation on running the controller, see the ODL Helium Installation
Guide.

Commit the code using Git CLI

Note

To be accepted, all code must come with a developer certificate of origin as
expressed by having a Signed-off-by. This means that you are asserting that you
have made the change and you understand that the work was done as part of
an open-source license.

Developer's Certificate of Origin 1.1

 By making a contribution to this project, I certify that:

 (a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

 (b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

 (c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

 (d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Mechanically you do it this way:

git commit --signoff

You will be prompted for a commit message. If you are fixing a buzilla bug you can add the
associated bug number to your commit message and it will get linked from Gerrit:

For Example:

http://localhost:8080/
http://elinux.org/Developer_Certificate_Of_Origin

OpenDaylight Developer Guide March 4, 2015 master

213

Fix for bug 2.

Signed-off-by: Ed Warnicke <eaw@cisco.com>
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch develop
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README
#

Pushing the Code via Git CLI

Use gitreview to push your changes back to the remote repository using:

 git review

You can set a topic for your patch by:

 git review -t <topic>

The Jenkins Controller User will verify your code.

Pulling the Code changes via Git CLI

Use git pull to get the latest changes from the remote repository

git pull origin HEAD:refs/for/develop

Pushing the Code via Git CLI

Use git push to push your changes back to the remote repository.

git push origin HEAD:refs/for/develop

You will get a message pointing you to your gerrit request like:

==========================
remote: Resolving deltas: 100% (2/2) +
remote: Processing changes: new: 1, refs: 1, done +
remote: +
remote: New Changes: +
remote: http://git.opendaylight.org/gerrit/64 +
remote: +
==========================

Viewing your Changes in Gerrit

Follow the link you got above to see your commit in Gerrit:

OpenDaylight Developer Guide March 4, 2015 master

214

Figure 10.3. Gerritt Code Review Sample

Note that the Jenkins Controller User has verified your code and at the bottom is a link to
the Jenkins build.

Once your code has been reviewed and submitted by a committer it will be merged into
the authoritative repo, which would look like this:

OpenDaylight Developer Guide March 4, 2015 master

215

Figure 10.4. Gerritt Code Merge Sample

Troubleshooting

1. What to do if your Firewall blocks port 29418

There have been reports that many corporate firewalls block port 29418. If that’s the case,
please follow the Setting up HTTP in Gerrit instructions and use git URL:

git clone https://<your_username>@git.opendaylight.org/gerrit/p/
lispflowmapping.git

You will be prompted for the password you generated in Setting up HTTP in Gerrit.

All other instructions on this page remain unchanged.

To download pre-built images with ODP bootstraps see the following Github project:

Pre-Built OpenDaylight VM Images

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://github.com/nerdalert/OpenDaylight-Lab

OpenDaylight Developer Guide March 4, 2015 master

216

11. ODL-SDNi
Content on using ODL SDNi can be found on the OpenDaylight wiki here: https://
wiki.opendaylight.org/view/ODL-SDNiApp:Developer_Guide

https://wiki.opendaylight.org/view/ODL-SDNiApp:Developer_Guide
https://wiki.opendaylight.org/view/ODL-SDNiApp:Developer_Guide

OpenDaylight Developer Guide March 4, 2015 master

217

12. OpenFlow Protocol Library
Content on developing using the OpenFlow Protocol Library can be found
on the OpenDaylight wiki here: https://wiki.opendaylight.org/view/
Openflow_Protocol_Library:Documentation

https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Documentation
https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Documentation

OpenDaylight Developer Guide March 4, 2015 master

218

13. OpenFlow Plugin

Table of Contents
OpenFlow Plugin: Sequence diagrams .. 219
OpenFlow Plugin:Config subsystem ... 223
Message Spy in OF Plugin .. 229
OpenFlow Plugin:Mininet .. 232
Installation .. 232
Usage .. 235
Coding tips for OpenFlow Plugin ... 235
OpenFlow Plugin: Wiring up notifications .. 237
OpenFlow Plugin:Python test scripts .. 239
General ... 240
ODL Test (odl_crud_tests.py) ... 241
Parameters .. 242
Stress Test (stress_test.py) ... 243
Operational Data Test (oper_data_test.py) .. 243
Switch restart (sw_restart_test.py) ... 243
OpenFlow Plugin: Robot framework tests .. 244
TLS support for OF Plugin ... 245
Configuring the ODL OpenFlow plugin .. 247
Configuring openvswitch SSL ... 247
Configuring a hardware switch with TLS .. 248
Open Flow Plugin: Support for extensibility ... 249
Overload protection in the OF Plugin .. 251

Table 13.1. OpenFlow plugin: Component map

Artifact ID Component Description

openflowplugin openflowplugin Main implementation of OFPlugin

openflowplugin-it test-provider drop-
test test-scripts

test Support for end-to-end, integration,
and regression testing

openflowplugin-controller-config configSubsystem Default configuration files for config
subsystem

distributions-openflowplugin-base distribution OFPlugin distribution, based on the
distribution of the controller, but the
old (OF-1.0 only) plugin is replaced
with the new plugin(OF-1.0+1.3)

learning-switch sample-consumer sample Sample projects demonstrating MD-
SAL usage

vagrant util Materialize testing virtual machine
containing mininet+ovs

OpenDaylight Developer Guide March 4, 2015 master

219

OpenFlow Plugin: Sequence diagrams

Figure 13.1. Message Lifecycle

OpenDaylight Developer Guide March 4, 2015 master

220

Figure 13.2. Handshake Scenario

OpenDaylight Developer Guide March 4, 2015 master

221

Figure 13.3. Connection Sequence (Handshake) Flow Diagram

OpenDaylight Developer Guide March 4, 2015 master

222

Figure 13.4. Message Order Preservation

Figure 13.5. Add Flow Sequence

OpenDaylight Developer Guide March 4, 2015 master

223

Figure 13.6. Generic Notification Sequence

OpenFlow Plugin:Config subsystem

Model provided modules by yang

General model (interfaces) - openflow-plugin-cfg.yang.

• The provided module is defined (identity openflow-provider)

• The target implementation is assigned (…OpenflowPluginProvider)

module openflow-provider {
 yang-version 1;
 namespace "urn:opendaylight:params:xml:ns:yang:openflow:common:config";
 prefix "ofplugin-cfg";

 import config {prefix config; revision-date 2013-04-05; }
 description
 "openflow-plugin-custom-config";
 revision "2014-03-26" {
 description
 "Initial revision";
 }
 identity openflow-provider{
 base config:service-type;
 config:java-class "org.opendaylight.openflowplugin.openflow.md.core.
sal.OpenflowPluginProvider";
 }
}

Implementation model - openflow-plugin-cfg-impl.yang

• The implementation of module is defined (identity openflow-provider-impl).

• The class name of the generated implementation is defined
(ConfigurableOpenFlowProvider).

OpenDaylight Developer Guide March 4, 2015 master

224

• The configuration of the module is defined through augmentation:

• This module requires an instance of a binding-aware-broker (container binding-aware-
broker).

• Also required is a list of openflow-switch-connection-providers. (Those are provided by
openflowjava: one plugin instance will orchester multiple openflowjava modules.)

module openflow-provider-impl {
 yang-version 1;
 namespace
 "urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl";
 prefix "ofplugin-cfg-impl";

 import config {prefix config; revision-date 2013-04-05;}
 import openflow-provider {prefix openflow-provider;}
 import openflow-switch-connection-provider {prefix openflow-switch-
connection-provider;revision-date 2014-03-28;}
 import opendaylight-md-sal-binding { prefix md-sal-binding; revision-date
 2013-10-28;}

 description
 "openflow-plugin-custom-config-impl";

 revision "2014-03-26" {
 description
 "Initial revision";
 }

 identity openflow-provider-impl {
 base config:module-type;
 config:provided-service openflow-provider:openflow-provider;
 config:java-name-prefix ConfigurableOpenFlowProvider;
 }

 augment "/config:modules/config:module/config:configuration" {
 case openflow-provider-impl {
 when "/config:modules/config:module/config:type = 'openflow-
provider-impl'";

 container binding-aware-broker {
 uses config:service-ref {
 refine type {
 mandatory true;
 config:required-identity md-sal-binding:binding-broker-
osgi-registry;
 }
 }
 }
 list openflow-switch-connection-provider {
 uses config:service-ref {
 refine type {
 mandatory true;
 config:required-identity openflow-switch-connection-
provider:openflow-switch-connection-provider;
 }
 }
 }

OpenDaylight Developer Guide March 4, 2015 master

225

 }
 }
}

Generating config and sal classes from yangs

Note

Suitable code generators, needed in pom, are involved.

<build> ...
 <plugins>
 <plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 <configuration>
 <codeGenerators>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.controller.config.yangjmxgenerator.plugin.
JMXGenerator
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/
config</outputBaseDir>
 <additionalConfiguration>
 <namespaceToPackage1>
 urn:opendaylight:params:xml:ns:yang:controller==org.
opendaylight.controller.config.yang
 </namespaceToPackage1>
 </additionalConfiguration>
 </generator>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.yangtools.maven.sal.api.gen.plugin.
CodeGeneratorImpl
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/
sal</outputBaseDir>
 </generator>
 <generator>
 <codeGeneratorClass>org.opendaylight.yangtools.yang.unified.
doc.generator.maven.DocumentationGeneratorImpl</codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/site/models</
outputBaseDir>
 </generator>
 </codeGenerators>
 <inspectDependencies>true</inspectDependencies>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>yang-jmx-generator-plugin</artifactId>

OpenDaylight Developer Guide March 4, 2015 master

226

 <version>0.2.5-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>maven-sal-api-gen-plugin</artifactId>
 <version>${yangtools.version}</version>
 <type>jar</type>
 </dependency>
 </dependencies>
 </plugin>
 ...

• JMX generator (target/generated-sources/config)

• sal CodeGeneratorImpl (target/generated-sources/sal)

• Documentation generator (target/site/models): openflow generatorand openflow
provider impl.

Altering generated files
Those files were generated under src/main/java in the package as referred in yangs (if they
exist, the generator will not overwrite them):

• ConfigurableOpenFlowProviderModuleFactory

The instantiateModule methods are extended in order to capture and inject the
osgi BundleContext into module, so it can be injected into final implementation:
OpenflowPluginProvider module.setBundleContext(bundleContext);

• ConfigurableOpenFlowProviderModule

The createInstance method is extended in order to inject osgi BundleContext into the
module implementation: pluginProvider.setContext(bundleContext);

Configuration xml file
The configuration file contains:

• Required capabilities

• Modules definitions from openflowjava

• Definitions from openflowplugin

• Modules definition

• openflow:switch:connection:provider:impl (listening on port 6633, name=openflow-
switch-connection-provider-legacy-impl)

• openflow:switch:connection:provider:impl (listening on port 6653, name=openflow-
switch-connection-provider-default-impl)

• openflow:common:config:impl (having 2 services (wrapping those 2 previous modules)
and binding-broker-osgi-registry injected)

• Provided services

https://jenkins.opendaylight.org/openflowplugin/job/openflowplugin-merge/ws/openflowplugin/target/site/models/openflow-provider.html
https://jenkins.opendaylight.org/openflowplugin/job/openflowplugin-merge/ws/openflowplugin/target/site/models/openflow-provider-impl.html
https://jenkins.opendaylight.org/openflowplugin/job/openflowplugin-merge/ws/openflowplugin/target/site/models/openflow-provider-impl.html

OpenDaylight Developer Guide March 4, 2015 master

227

• openflow-switch-connection-provider-default

• openflow-switch-connection-provider-legacy

• openflow-provider

<snapshot>
 <required-capabilities>

 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl?
module=openflow-switch-connection-provider-impl&revision=2014-03-28</
capability>

 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider?
module=openflow-switch-connection-provider&revision=2014-03-28</capability>

 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl?
module=openflow-provider-impl&revision=2014-03-26</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config?
module=openflow-provider&revision=2014-03-26</capability>
 </required-capabilities>

 <configuration>

 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
 prefix:openflow-switch-connection-provider-impl
 </type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
 prefix:openflow-switch-connection-provider-impl
 </type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>

 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">
 prefix:openflow-provider-impl
 </type>
 <name>openflow-provider-impl</name>

 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
 ofSwitch:openflow-switch-connection-provider
 </type>
 <name>openflow-switch-connection-provider-default</name>

OpenDaylight Developer Guide March 4, 2015 master

228

 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
 ofSwitch:openflow-switch-connection-provider
 </type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>

 <binding-aware-broker>
 <type xmlns:binding=
"urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
 binding:binding-broker-osgi-registry
 </type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">
 prefix:openflow-switch-connection-provider
 </type>
 <instance>
 <name>openflow-switch-connection-provider-default</name>
 <provider>/modules/module[type='openflow-switch-connection-
provider-impl'][name='openflow-switch-connection-provider-default-impl']</
provider>
 </instance>
 <instance>
 <name>openflow-switch-connection-provider-legacy</name>
 <provider>/modules/module[type='openflow-switch-connection-
provider-impl'][name='openflow-switch-connection-provider-legacy-impl']</
provider>
 </instance>
 </service>

 <service>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:common:config">prefix:openflow-
provider</type>
 <instance>
 <name>openflow-provider</name>
 <provider>/modules/module[type='openflow-provider-impl'][name=
'openflow-provider-impl']</provider>
 </instance>
 </service>
 </services>

 </configuration>
</snapshot>

OpenDaylight Developer Guide March 4, 2015 master

229

API changes
In order to provide multiple instances of modules from openflowjava, there is an
API change. Previously, the OFPlugin got access to the SwitchConnectionProvider
exposed by OFJava, and injected the collection of configurations so that for every
configuration, a new instance of the TCP listening server was created. Now, those
configurations are provided by the configSubsystem, and the configured modules
(wrapping the original SwitchConnectionProvider) are injected into the OFPlugin (wrapping
SwitchConnectionHandler).

Providing config file (IT, local distribution/base, integration/
distributions/base)

openflowplugin-it

The whole configuration is contained in one file (controller.xml). The entries needed in
order to start up and wire the OEPlugin + OFJava are simply added there.

OFPlugin/distribution/base

The new config file is added (src/main/resources/configuration/initial/42-openflow-
protocol-impl.xml), and copied to the config/initial subfolder of the build.

Integration/distributions/build

In order to push the actual config into the config/initial subfolder of distributions/base
in the integration project, a new artifact was created in OFPlugin. The openflowplugin-
controller-config contains only the config xml file under src/main/resources. Another
change was committed into the integration project. During a build, this config xml is
extracted and copied to the final folder in order to be accessible during the controller run.

Message Spy in OF Plugin
With the intent to debug, the OpenFlow plugin implements a Message Spy to monitor
controller communications. The Message Spy collects and displays message statistics.

Message statistics collection
Message statistics are grouped according to message type and checkpoint. The counter
assigned to a checkpoint and message class increases by 1 when a message passes through.

The following checkpoints count passing messages:

/**
 * statistic groups overall in OFPlugin
 */
 enum STATISTIC_GROUP {
 /** message from switch, enqueued for processing */
 FROM_SWITCH_ENQUEUED,
 /** message from switch translated successfully - source */
 FROM_SWITCH_TRANSLATE_IN_SUCCESS,
 /** message from switch translated successfully - target */
 FROM_SWITCH_TRANSLATE_OUT_SUCCESS,
 /** message from switch where translation failed - source */

OpenDaylight Developer Guide March 4, 2015 master

230

 FROM_SWITCH_TRANSLATE_SRC_FAILURE,
 /** message from switch finally published into MD-SAL */
 FROM_SWITCH_PUBLISHED_SUCCESS,
 /** message from switch - publishing into MD-SAL failed */
 FROM_SWITCH_PUBLISHED_FAILURE,

 /** message from MD-SAL to switch via RPC enqueued */
 TO_SWITCH_ENQUEUED_SUCCESS,
 /** message from MD-SAL to switch via RPC NOT enqueued */
 TO_SWITCH_ENQUEUED_FAILED,
 /** message from MD-SAL to switch - sent to OFJava successfully */
 TO_SWITCH_SUBMITTED_SUCCESS,
 /** message from MD-SAL to switch - sent to OFJava but failed*/
 TO_SWITCH_SUBMITTED_FAILURE
 }

Message statistics display
Access the message statistics by means of logs, osgi, and jmx.

• osgi command (on demand): This method is considered deprecated. : osgi>
dumpMsgCount

• From the controller console where statistics are refreshed every
10 seconds: Required logback settings: <logger
name="org.opendaylight.openflowplugin.openflow.md.queue.MessageSpyCounterImpl"
level="DEBUG" />

• As JMX from the jconsole:

• Start the OFplugin with the -jmx parameter.

• Tab MBeans contains org.opendaylight.controller.

• RuntimeBean has a msg-spy-service-impl.

• Operations provides makeMsgStatistics report functionality.

Sample results

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED:
 MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED:
 MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED:
 MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
 MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
 MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS:
 MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[NodeConnectorStatisticsUpdate] -> +3 | 7

OpenDaylight Developer Guide March 4, 2015 master

231

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS:
 MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_SRC_FAILURE: no
 activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS:
 MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_FAILURE: no
 activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_SUCCESS:
 MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_FAILED: no activity
 detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_SUCCESS:
 MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_FAILURE: no activity
 detected

OpenDaylight Developer Guide March 4, 2015 master

232

OpenFlow Plugin:Mininet

Mininet on debian wheezy(7), x86_64

Requirements

Openvswitch

1. Install all requirements.

apt-get install build-essential fakeroot
apt-get install debhelper autoconf automake libssl-dev pkg-config bzip2
 openssl python-all procps python-qt4 python-zopeinterface python-twisted-
conch

1. Install a few helper applications.

apt-get -y install screen sudo vim etckeeper mlocate autoconf2.13 libssl-dev
 graphviz tcpdump gdebi-core

Test the Python environment

Python pip

1. Install setuptools.

wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
sudo python ez_setup.py

1. Install pip.

wget https://raw.github.com/pypa/pip/master/contrib/get-pip.py
sudo python get-pip.py

1. Post install the python libraries required by the ODL testing script.

sudo pip install netaddr

Installation

Openvswitch 2.0.0

1. Remove the old packages, as root:

sudo -i
apt-get remove openvswitch-common openvswitch-datapath-dkms openvswitch-
controller openvswitch-pki openvswitch-switch

1. Download and unpack OpenV Switch 2.0.0.

wget http://openvswitch.org/releases/openvswitch-2.0.0.tar.gz

OpenDaylight Developer Guide March 4, 2015 master

233

tar zxvf openvswitch-2.0.0.tar.gz

Build and install

1. Install the openvswitch package. Deploy it using the module assistant at: https://
wiki.debian.org/ModuleAssistant

cd ../
gdebi openvswitch-datapath-source_2.0.0-1_all.deb
module-assistant auto-install openvswitch-datapath
gdebi openvswitch-common_2.0.0-1_amd64.deb
gdebi openvswitch-switch_2.0.0-1_amd64.deb
gdebi openvswitch-pki_2.0.0-1_all.deb
gdebi openvswitch-controller_2.0.0-1_amd64.deb

Post installation settings

service openvswitch-controller stop
update-rc.d openvswitch-controller disable

Test installation

ovs-vsctl show
ovs-vsctl --version
ovs-ofctl --version
ovs-dpctl --version
ovs-controller --version

Mininet 2.1.0

1. Download and checkout the required version.

git clone git://github.com/mininet/mininet
cd mininet
git checkout -b 2.1.0 2.1.0

1. Compile and install mininet.

gcc mnexec.c -o mnexec
mv mnexec /usr/bin/
python setup.py install

1. Test the installation.

mn --version
mn --test pingall

Expected result

root@debian:~/mininet# mn --version
2.1.0
root@debian:~/mininet# mn --test pingall
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:

https://wiki.debian.org/ModuleAssistant
https://wiki.debian.org/ModuleAssistant

OpenDaylight Developer Guide March 4, 2015 master

234

s1
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Starting controller
*** Starting 1 switches
s1
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)
*** Stopping 1 switches
s1 ..
*** Stopping 2 hosts
h1 h2
*** Stopping 1 controllers
c0
*** Done
completed in 0.269 seconds

Post installation additions

• Modify the source code of the mininet node.py file as described in Stage 3.

--- /root/mininet/build/lib.linux-x86_64-2.7/mininet/node.py 2013-11-22
 03:35:12.000000000 -0800
+++ /usr/local/lib/python2.7/dist-packages/mininet-2.1.0-py2.7.egg/mininet/
node.py 2013-11-22 06:17:07.350574387 -0800
@@ -952,6 +952,10 @@
 datapath: userspace or kernel mode (kernel|user)"""
 Switch.__init__(self, name, **params)
 self.failMode = failMode
+ protKey = 'protocols'
+ if self.params and protKey in self.params:
+ print 'have protcol params!'
+ self.opts += protKey + '=' + self.params[protKey]
 self.datapath = datapath

@@ -1027,8 +1031,9 @@
 if self.datapath == 'user':
 self.cmd('ovs-vsctl set bridge', self,'datapath_type=netdev')
 int(self.dpid, 16) # DPID must be a hex string
+ print 'OVSswitch opts: ',self.opts
 self.cmd('ovs-vsctl -- set Bridge', self,
- 'other_config:datapath-id=' + self.dpid)
+ self.opts+' other_config:datapath-id=' + self.dpid)
 self.cmd('ovs-vsctl set-fail-mode', self, self.failMode)
 for intf in self.intfList():
 if not intf.IP():

Start and test the modified mininet

1. Start the mn session:

sudo mn --topo single,3 --controller 'remote,ip=<your controller IP>' --
switch ovsk,protocols=OpenFlow10

1. Alternatively, use this command:

https://wiki.opendaylight.org/view/Openflow_Protocol_Library:OpenVirtualSwitch#Stage_3

OpenDaylight Developer Guide March 4, 2015 master

235

sudo mn --topo single,3 --controller 'remote,ip=<your controller IP>' --
switch ovsk,protocols=OpenFlow13

1. Test the version of the protocol used by switch "s1":

ovs-ofctl -O OpenFlow10 show s1
ovs-ofctl -O OpenFlow13 show s1

Usage
REST tests openflowplugin

sudo python odl_tests.py --xmls 1,2

• For more option informations, use:

sudo python odl_tests.py --help

Coding tips for OpenFlow Plugin
If you use Eclipse, the following compiler settings might be useful either during coding or
while fixing errors. The following errors are noteworthy:

• name shadowing.

• null checks.

• missing case in switch block.

• missing break in case.

• unused variables/parameters.

• annotations checks (@override).

• access to non accessible member of enclosing type.

• If overriding hashcode or equals, both must be overriden.

Also useful are warnings upon missing javadoc comments for public classes, members, and
methods.

OpenDaylight Developer Guide March 4, 2015 master

236

Figure 13.7. Configure Compiler Errors and Warnings

OpenDaylight Developer Guide March 4, 2015 master

237

Figure 13.8. Configure Javadoc

OpenFlow Plugin: Wiring up notifications

Introduction

OpenFlow messages coming from the OpenflowJava plugin into MD-SAL Notification
objects must be translated, and then published to the MD-SAL.

To create and register a Translator

1. Create a Translator class.

2. Register the Translator.

3. Register the notificationPopListener to handle Notification Objects.

Creating a Translator Class

An example is available in PacketInTranslator.java.

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/translator/PacketInTranslator.java;h=e0944c39bfacad1d396b15087f668d9d1fa1d95d;hb=HEAD

OpenDaylight Developer Guide March 4, 2015 master

238

1. Create the class.

public class PacketInTranslator implements IMDMessageTranslator<OfHeader,
 List<DataObject>> {

1. Implement the translate function:

public class PacketInTranslator implements IMDMessageTranslator<OfHeader,
 List<DataObject>> {

 protected static final Logger LOG = LoggerFactory
 .getLogger(PacketInTranslator.class);
 @Override
 public PacketReceived translate(SwitchConnectionDistinguisher cookie,
 SessionContext sc, OfHeader msg) {
 ...
 }

1. Ensure that the type is the expected one, and cast it:

 if(msg instanceof PacketInMessage) {
 PacketInMessage message = (PacketInMessage)msg;
 List<DataObject> list = new CopyOnWriteArrayList<DataObject>();

1. Complete the translation and return.

 PacketReceived pktInEvent = pktInBuilder.build();
 list.add(pktInEvent);
 return list;

Registeing the Translator Class
• Go to MDController.java and in init() add register your Translator:

public void init() {
 LOG.debug("Initializing!");
 messageTranslators = new ConcurrentHashMap<>();
 popListeners = new ConcurrentHashMap<>();
 //TODO: move registration to factory
 addMessageTranslator(ErrorMessage.class, OF10, new ErrorTranslator());
 addMessageTranslator(ErrorMessage.class, OF13, new ErrorTranslator());
 addMessageTranslator(PacketInMessage.class,OF10, new
 PacketInTranslator());
 addMessageTranslator(PacketInMessage.class,OF13, new
 PacketInTranslator());

Note

There is a separate registration for each of the OF10 and OF13. Basically, you
indicate the type of openflowjava message you wish to translate for, the OF
version, and an instance of your Translator.

Registering your MD-SAL message for notification to the
MD-SAL

• In MDController.init() register to have the notificationPopListener handle your MD-SAL
Message:

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/MDController.java;h=d79e18704b05923eee2a2da57d02655e2af6d9c1;hb=HEAD

OpenDaylight Developer Guide March 4, 2015 master

239

addMessagePopListener(PacketReceived.class, new
 NotificationPopListener<DataObject>());

When a message comes from the openflowjava plugin, it will be translated and published
to the MD-SAL.

OpenFlow Plugin:Python test scripts

Prerequisites for Python test-scripts

• Linux based OS (these instructions cover debian 7 - wheezy)

• Java 1.7+

• Python (v 2.6)

• Openvswitch (v 2.0.0)

• Mininet (v 2.1.0)

• Controller (supporting openflow 1.3)

Installing python tools

Note

Build python tools with python2.6, not the default python.

• wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py

• python2.6 ez_setup.py

• wget https://raw.github.com/pypa/pip/master/contrib/get-pip.py

• python2.6 get-pip.py

See the section called “OpenFlow Plugin:Mininet” [232]

Installing Wireshark

1. apt-get install wireshark

2. Make yourself a standard user again (CTRL^D)

3. sudo dpkg-reconfigure wireshark-common

4. sudo usermod -a -G wireshark $USER

5. sudo reboot

Adding openflow13 dissector to wireshark

1. mkdir /home/mininet/.wireshark/plugins/

https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py
https://raw.github.com/pypa/pip/master/contrib/get-pip.py

OpenDaylight Developer Guide March 4, 2015 master

240

2. Copy the file openflow.so to this directory //TODO add attachment.

Controller

Install Java JDK and set JAVA_HOME

1. apt-get install openjdk-7-jdk

2. Export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java

Download, unzip, and run the integration build

1. Find the latest integration/distribution/base build on nexus.

2. Download it (using for example, wget <url to artifact.zip>) and unzip it (using for
example, unzip <artifact.zip>)

3. Start the controller:

cd opendaylight
./run.sh -of13

Clone openflowplugin project

• git clone https://git.opendaylight.org/gerrit/p/openflowplugin.git

Tests

• locations: openflowplugin/test-scripts

• content directory

• xmls (switch configuration input in xml form)

• openvswitch

• runnable files:

• odl_crud_tests.py

• stress_test.py

• oper_data_test.py

• sw_restart_test.py

General
The tests are designed for running on Linux based machines with installed ovs and mininet
python scripts. All scripts has to be started with same permission as mininet (sudo).
Otherwise the scripts can not start mininet. All runnable scripts contains a help description
for input parameters for a quick orientation.

https://git.opendaylight.org/gerrit/p/openflowplugin.git

OpenDaylight Developer Guide March 4, 2015 master

241

Basic parameters for all runnable scripts:

• --help: dump help

• --mnport: A controller port listener for the openflow switch communications. The
parameter is used for configuration startup of the Mininet. A default value is 6653.

• --odlhost: A controller IP address. The parameter is used for configuration startup of
the Mininet and for the rest address builders. A default value is 127.0.0.1 (localhost).

• --odlport: A controller port listener for a http REST communication. The parameter is
used for the rest address builders.

ODL Test (odl_crud_tests.py)
The test scripts are designed like CRUD (Create Read Update Delete) End-to-End black-box
test suite for testing the switch configuration inputs/outputs via RESTconf. (It could work
with mininet [opf13] by CPqD,OVS only.)

All inputs are read from xml files:

• file prefix f*.xml # Flow ;

• file prefix g*.xml # Group ;

• file prefix m*.xml # Meter ;

Note

Only the Groups and the Meters are supported by CPqD.

The test uses:

• RESTfull (GET, PUT, POST (create data only), DELETE)

• RESTconf POST sal-services

Test life cycle

1. Read input and put in to controller via REST (PUT | POST | POST sal-add).

2. Get the stored data via REST from config DataStore and compare input vs output (GET).

3. Get the stored data via REST from operational DataStore and compare input vs output
(GET).

4. Modify the input and the update put in to controller via REST (PUT | POST sal-update).

5. Delete the input via REST (DELETE | POST sal-remove).

6. Validate the delete process in config DS and operational DS (GET).

OpenDaylight Developer Guide March 4, 2015 master

242

Parameters
• --odlhost: odl controller host (default value is 127.0.0.1)

• --odlport: odl RESTconf listening port (default value is 8080)

• --loglev: tlogging level definition (default value is DEBUG) debug level contains
request/response payload

• --mininet: OpenVSwitch or CPqD (default OVS)

• --fxmls:The number specifies a Flow test xml file from xmls directory (pattern:
f{nr}.xml) (e.g. 1,3,34). This parameter has no default value. The script is testing
all f_.xml files from xmls directory without --fxmls parameter. 0 means no test. The
parameter is relevant for (OVS and CPqD)

• --mxmls:The number specifies a Meter test xml file from xmls directory (pattern:
m{nr}.xml) (e.g. 1,3). This parameter has no default value. The script is testing all m_.xml
files from xmls directory without --mxmls parameter. 0 means no test. The parameter is
relevant for (CPqD only)

• --gmls:The number specifies a Group test xml file from xmls directory (pattern:
g{nr}.xml) (e.g. 1,3). This parameter has no default value. The script is testing all g_.xml
files from xmls directory without --gxmls parameter. 0 means no test. The parameter is
relevant for (CPqD only)

• --confresp: (configuration response) - define a delay to the Configruation Data Store
(default = 0 sec.) Increase this value is important for a weaker controller machine

• --operresp: (operation response) - define a delay to the Operation Data Store (defalut
= 3 sec.) Increase this value is important for a weaker controller machine or a weaker
network

• --coloring: switcher for enable/disable coloring logged output

Note

The script has a file and the console logging output handlers (file crud_test.log).

cmd example:

python odl_crud_tests.py --mininet 2 --fxmls 1 --gxmls 0 --mxmls 3 --loglev 2

cmd means: The script expects ODL Controller RESTconf listener in 127.0.0.1:8080; the
script expects Mininet by CPqD (gxmls and mxmls params are not ignored); and the script
create the tests for f1.xml, and m3.xml and the script shows only INFO and ERROR logging
messages which are colourized.

Note

The device Errors listener is not supported yet. We recommend that you use a
wireshark tool for the investigation of an unexpected behaviour.

OpenDaylight Developer Guide March 4, 2015 master

243

Stress Test (stress_test.py)
The test simulates multiple connections for the repeatable END-TO-END add flow test
scenario. The flow pattern is the same (look at openvswitch.flow_tools.py). The script
changes only a flow_id value.

The test life cycle:

• Initialize mininet and thread pool

• The incremental add flow’s group (in every thread from thread pool)

• Check nr. of flows (validate numbers of flows with expected calculated values and make
report)

• Get all flows from switch directly by command line

• Get all flows from configuration DataStore

• Get all flows from the operational DataStrore

• Incrementally delete the groups of the flow (in every thread from thread pool) final
report

Parameters:

• --threads: number of threads which should be used for multiple connection simulation
in the thread pool. The default value is 50

• --flows: number of flows which should be used for add connection samples

Operational Data Test (oper_data_test.py)
The test checks the operational store of the controller. The Flow addition action and
deletion action from the Data Store. When a flow is added via REST, it is added to the
config store and then pushed to the switch. When it is successfully pushed to the switch, it
is also moved to the operational store. Deletion also happens the same way.

You can specify the number of flows added by the parameter:

--flows : number of the flows which are add to switch. The default value is
 100

Switch restart (sw_restart_test.py)
The test is for a flow addition to a switch after the switch has been restarted. After the
switch is restarted, it should get the flow configuration from the controller operational
datastore. The speed at which the configuration is pushed to the restarted switch may vary.
So, you can specify the wait time; and the number of retries by wait time; and the number
of retries by:

sw_restart_test.py --wait WAIT_TIME (default is 30)
sw_restart_test.py --retry NO_RETRIES (default is 1)

OpenDaylight Developer Guide March 4, 2015 master

244

You can also specify that flows are added by xmls from the /xmls folder. If you do not
specify this parameter, the default xml template will be used.

sw_restart_test.py --xmls XMLS (default is generic template)

OpenFlow Plugin: Robot framework tests

Prerequisites for robot tests

• Virtual machine with Mininet for OF1.0 and OF1.3 and with OpenSwitch

• Current version of ODL Controller

• Python (v 2.6 and higher)

• Robot framework

• GIT

Installation

There are in three puzzle pieces:

• ODL controller

• Mininet with ovs

• Robot framework + tests

Note

Use VMs to run them on the same machine or distribute them.

All-in-one strategy: Advantages and disadvantages

• Easy to transfer whole setup (if running on VM)

• No network issues (especially between VMs)

• However, there is no simple way to switch or update mininet or ovs

Distributed strategy: Robot + ODL controller on one VM, mininet on another

• Modularity

• Transfer of the whole set-up involves two VMs

• VMs need network access to one another (This can be achieved by the internal network
of virtualBox.)

VM with Mininet

There are three options to create a VM:

OpenDaylight Developer Guide March 4, 2015 master

245

• Follow instructions on this Opendaylight wiki page at: Install Mininet for OF1.0 and
OF1.3

• Download Preinstalled VMs or there is also a possibility to create mininet VM from
scratch (based on debian distribution)

Important

In order for robot framework to be able to control mininet through ssh the
prompt on mininet VM has to end with ">" character.

Component Topic Included in Guide

MD-SAL Southbound Protocol Plugin Developer guide

MD-SAL Plugin Types:

• Southbound Protocol Plugin

• Manager-type Application

• Protocol Library

• Connector Plugin

User Guide

TLS support for OF Plugin
SDN separates the data plane from the control plane of networks. It is imperative that
communication between the two planes is secure. Secure communications between the
data plane switches and controllers on the control plane require the authentication of
switches and controllers. Authentication ensures that no unsecured switch connects to a
controller, and that no unsecured controller manages a switch. When a controller with
TLS configured is opened, the OpenFlow port only accepts Transport Layer Security (TLS)
communications. Any switch without TLS configured will fail in its connection attempt.

Open Secure Sockets Layer (SSL) provides the tools for the public key infrastructure
(PKI) management required to establish secure connections between a controller and
switches. Information on `SSL on Open vSwitch and ovs controller’ is available at: https://
github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller

In a lab environment, the private key of the controller resides on the mininet host that also
acts as the Certification authority (CA) signing host. In a production environment, the key
generation for the controller would be separate from that of the switches; only the public
controller key is shared with the switches.

Note

While in a lab environment, TLS may be configured with the keystore shipped
with the controller, the TLS configuration in a production environment must
choose a different keystore.

Creating and signing private and public key certificates Use ovs pki to create private keys
and public certificate files for the switches and the controller.

1. On the mininet host, verify whether PKI is initialized: : ls /var/lib/openvswitch/
pki/controllerca/cacert.pem

https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Create_System_Test_Environment#Install_Mininet_for_OF1.0_and_OF1.3
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Create_System_Test_Environment#Install_Mininet_for_OF1.0_and_OF1.3
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Test_VMs#Links_to_VMs
https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller
https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller

OpenDaylight Developer Guide March 4, 2015 master

246

2. If PKI is not initialized, use: ovs-pki init

3. To generate the signed certificates, use the request certificates sc-req.pem and ctl-
req.pem:

$ ls /etc/openvswitch
conf.db ctl-cert.pem ctl-privkey.pem ctl-req.pem sc-cert.pem sc-privkey.pem
 sc-req.pem
system-id.conf

1. To create private keys and public cert files for the switches and the controller, run the
ovs-pki:

cd /etc/openvswitch
sudo ovs-pki req+sign sc switch
sudo ovs-pki req+sign ctl controller

1. From .pem files, create an intermediate Open SSL PKCS 12 formatted keystore to hold
the private key for the controller.

sudo openssl pkcs12 -export -in ctl-cert.pem -inkey ctl-privkey.pem \
-out ctl.p12 -name odlserver \
-CAfile /var/lib/openvswitch/pki/controllerca/cacert.pem -caname root -chain
You'll be prompted for a password, use "opendaylight"
Enter Export Password:
Verifying - Enter Export Password:

1. Copy the intermediate keystore, which has the private key of the controller, and the
switches public key cert file (ctl.p12 and sc-cert.pem) from the mininet host to any work
directory on the controller machine. Import the PKSC 12 format to a Java compatible
format that the controller can use:

sftp mininet@mininetipaddress
mininet
sftp get ctl.p12 sc-cert.pem
quit

1. For use in the steps that follow, find a keytool in a jdk bin directory, and add it to the
path:

keytool -importkeystore \
 -deststorepass opendaylight -destkeypass opendaylight -destkeystore
 ctl.jks \
 -srckeystore ctl.p12 -srcstoretype PKCS12 -srcstorepass opendaylight \
 -alias odlserver

1. Store the public key of the switch in a truststore:

keytool -importcert -file sc-cert.pem -keystore truststore.jks -storepass
 opendaylight
when prompted "Trust this certificate? [no]:" enter "yes"
Certificate was added to keystore

1. Copy the two keystores to the ssl configuration directory:

mkdir ODLINSTALL/configuration/ssl
cp ctl.jks truststore.jks ODLINSTALL/configuration/ssl

OpenDaylight Developer Guide March 4, 2015 master

247

Configuring the ODL OpenFlow plugin
• Configure the OF plugin using the following:

cd configuration/initial
vi configuration/initial/42-openflowplugin.xml
add the <tls> blocks as shown to each of the existing OF-switch-connection-
provider modules

 <!-- default OF-switch-connection-provider (port 6633) -->
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
 prefix:openflow-switch-connection-provider-impl
 </type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 <tls>
 <keystore>configuration/ssl/ctl.jks</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>PATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>configuration/ssl/truststore.jks</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>PATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls>

 </module>
 <!-- default OF-switch-connection-provider (port 6653) -->
 <module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">
 prefix:openflow-switch-connection-provider-impl
 </type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 <tls>
 <keystore>configuration/ssl/ctl.jks</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>PATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>configuration/ssl/truststore.jks</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>PATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls>

 </module>

Configuring openvswitch SSL
To configure openswitch SSL

OpenDaylight Developer Guide March 4, 2015 master

248

1. Set ovs ssl options.

sudo ovs-vsctl set-ssl \
 /etc/openvswitch/sc-privkey.pem \
 /etc/openvswitch/sc-cert.pem \
 /var/lib/openvswitch/pki/controllerca/cacert.pem

1. Start a mininet with SSL connections to the ODL controller.

a. Open the `ssl_switch_tests.py’ file

#!/usr/bin/python
from mininet.net import Mininet
from mininet.node import Controller, RemoteController
from mininet.cli import CLI
from mininet.log import setLogLevel, info

def emptyNet():
 net = Mininet(controller=RemoteController)
 net.addController('c0')
 h1 = net.addHost('h1')
 h2 = net.addHost('h2')
 s1 = net.addSwitch('s1')
 net.addLink(h1, s1)
 net.addLink(h2, s1)

 net.start()
 s1.cmd('ovs-vsctl set-controller s1 ssl:YOURODLCONTROLLERIPADDRESS:6633')

 CLI(net)
 net.stop()

if __name__ == '__main__':
 setLogLevel('info')
 emptyNet()

1. Start mininet with TLS:

chmod +x ssl_switch_test.py
sudo ./ssl_switch_test.py

Configuring a hardware switch with TLS
The configuration example that follows uses a Brocade MLX device. To configure a
hardware switch

1. Set up a tftp server.

telnet@NetIron MLX-4 Router#enable
<enter config password>.

1. Copy the sc-cert.pem and sc-privkey.pem files to the tftp sever on the controller:

telnet@NetIron MLX-4 Router(config)#copy tftp flash 10.0.0.1 sc-cert.pem
 client-certificate
telnet@NetIron MLX-4 Router(config)#copy tftp flash 10.0.0.1 sc-privkey.pem
 client-private-key
telnet@NetIron MLX-4 Router(config)#openflow controller ip-address 10.0.0.1

OpenDaylight Developer Guide March 4, 2015 master

249

Note

A tftp server runs on the controller host "10.0.0.1".

Commands for debugging

Debugging mininet To see connection entries in the ovswitchd log file, use: sudo tail /
var/log/openvswitch/ovs-vswitchd.log Debugging the ODL controller ./
run.sh -Djavax.net.debug=ssl,handshake

Open Flow Plugin: Support for extensibility
OpenFlow (OF) allows vendor-defined extensions to fields in the flow entries of flow tables.
OpenFlow-1.3 specifications describe experimenter items using meter, queue, match,
action, multipart, table features, and error message. The OF Plugin supports extensions
to the action and match fields of flow entries. OF Plugin extensibility API is defined in the
openflowplugin-extension-api (odl), for example, converter interfaces, and register or
lookup keys. OF Plugin extensibility is dependent on the MD-SAL and the OpenFlow Java
Library. The extensibility functionality uses a two-level conversion between the following:

• The semantic high level model (MD-SAL) and the protocol-oriented low level model
(OFJava)

• The low-level model (OFJava) and the Wire protocol

Vendor actions augment the MD-SAL model. MD-SAL defines the flow model using yang.
Vendors can extend the existing MD-SAL models by using the augmentation feature
of yang. Augments only add new items to the model. They neither remove nor modify
existing models. The OFJava-API contains protocol related constants and interfaces
describing how to work with OFJava and generated models (generated from yang files).
These models are referred to as OFJava-API models.

Figure 13.9. OF Plugin support for extensibility

OpenDaylight Developer Guide March 4, 2015 master

250

Converters (semantic level)

Converters aid communication between applications and devices by making possible the
communication between southbound APIs and their North-bound counterparts. They
translate MD-SAL models to OFJava-API models. The default set of converters reside in:
openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/sal/
convertor

Converters act upon models from and to the MD-SAL. Inputs for action converter
from MD-SAL are instances of the MD-SAL model: for example, in the case of action,
OutputActionCase. The output contains OFJava-API models of Action transferred from
applications to devices. Working in reverse, action converters to MD-SAL translate OFJava-
API models (Action) to MD-SAL models (Action).

After a vendor bundle is activated, converters are registered with the OF plugin so that
they can work. Registration is based on the augmentation type and version. Once the
converters are registered, the OF Plugin can convert MD-SAL action to OF Java actions.

Approaches to action conversion

The sample that follows shows two approaches to converting action
(ActionConvertor.java). The first approach relies on a key field in a generalExtension
augmentation. The second approach directly creates the converter lookup key out of the
action type.

else if (action instanceof GeneralExtensionGrouping) {

 /**
 * TODO: EXTENSION PROPOSAL (action, MD-SAL to OFJava)
 * - we might need sessionContext as converter input
 *
 */

 GeneralExtensionGrouping extensionCaseGrouping =
 (GeneralExtensionGrouping) action;
 Extension extAction = extensionCaseGrouping.getExtension();
 ConverterExtensionKey<? extends ExtensionKey> key = new
 ConverterExtensionKey<>(extensionCaseGrouping.getExtensionKey(), version);
 ConvertorToOFJava<Action> convertor =
 OFSessionUtil.getExtensionConvertorProvider().
getConverter(key);
 if (convertor != null) {
 ofAction = convertor.convert(extAction);
 }
 } else {
 // try vendor codecs
 TypeVersionKey<org.opendaylight.yang.gen.v1.urn.opendaylight.
action.types.rev131112.action.Action> key =
 new TypeVersionKey<>(
 (Class<? extends org.opendaylight.yang.
gen.v1.urn.opendaylight.action.types.rev131112.action.Action>) action.
getImplementedInterface(),
 version);
 ConvertorActionToOFJava<org.opendaylight.yang.gen.v1.urn.
opendaylight.action.types.rev131112.action.Action, Action> convertor =

OpenDaylight Developer Guide March 4, 2015 master

251

 OFSessionUtil.getExtensionConvertorProvider().
getConverter(key);
 if (convertor != null) {
 ofAction = convertor.convert(action);
 }
 }

Encoders and decoders for augment messages (low level)
Augments are encoded using encoders. Vendor bundles register the encoders so that
the OpenFlow Java Library can support the vendor actions. Default sets of encoders
and decoders reside in /openflow-protocol-impl/src/main/java/org/opendaylight/
openflowjava/protocol/impl/serialization and /openflow-protocol-impl/src/main/java/org/
opendaylight/openflowjava/protocol/impl/deserialization. The OF plugin uses encoders to
create the binary (wire protocol) form of a message object, and write it to the buffer.

Decoders on the other hand are responsible for the following tasks:

• Read binary buffer

• Detect the type of message (encoded in the header)

• Create the corresponding objects, and populate them with values from the buffer

Master decoder
Vendor decoders cannot be directly registered if the actual message type is outside
the general header, and only vendor-provided logic can take decisions. Then a master
decoder, which is also provided be the vendor, is used. The master decoder contains logic
to register decoders and to distinguish between vendor actions. The same work-flow
persists: the lookup decoder by key containing version, actionClass, vendorActionSubtype.
(For example, the experimenter action makes it appear as if all actions from one vendor
have the same header, and the subtype of the actual action lies somewhere further in the
buffer.)

The OFJava extensions provide the space for registering vendor encoders and master
decoders. They also provide the lookup mechanism to pick the right decoder or encoder for
work with a message or buffer.

Overload protection in the OF Plugin
Overload protection in the OpenFlow (OF) Plugin works in the following way:

1. The ConnectionConductor is the source from where all incoming messages are
pushed to queues for asynchronous processing. It is the part of the OF Plugin
closest to OFJava, and has on*Message methods (listeners to incoming messages).
The ConnectionConductorImpl pushes messages to the QueueKeeper. Every
ConnectionConductor has a local instance of the QueueKeeper. The QueueKeeper has
two queues:

• Unordered queues (for packetIn messages)

• Ordered queues (for other messages) Both queue types are limited and blocking.

OpenDaylight Developer Guide March 4, 2015 master

252

2. If a particular queue is full, the messages pushed to it will be dropped. Upon a successful
push, the harverster is pinged to be roused from hibernation.

3. A QueueZipper wraps the two queues, and provides the poll method. This poll method
rotates regularly through the underlying queues. If the currently polled queue is empty,
it polls the next queue. (See QueueKeeperFairImpl).

4. Each QueueKeeper gets registered by the QueueKeeperHarvester. The Harvester
runs upon one thread; iterates through all the registered QueueKeepers; and polls
them. The polled message is then queued into the QueueProcessor. If all the registered
queueKeepers are empty, the harverster hibernates.

5. At the QueueProcessor are several threads translating messages from OFJava-API models
to MD-SAL models (preserving order). The QueueProcessor uses two threadPools:

• One threadPool to process the queue items

• Another threadPool (containing one thread) to publish messages to the MD-SAL

A queue gets filled for different reasons:

• The MD-SAL is overloaded.

• A node is flooding, or something has generally slowed down the processing pipeline.
If the queue in the QueueProcessor is full, it blocks the harvester. If the harvester is
blocked, the queues in the QueueKeeper will not be emptied.

Note

The current implementation of the feature offers no checking of the memory or
CPU load to actively throttle messages.

Figure 13.10. Overload protection

Effects of overload protection

• When a node floods the controller, it will not block messages from other nodes.

OpenDaylight Developer Guide March 4, 2015 master

253

• The processing of messages is fair: Floody node messages are neither prioritized, nor do
they infest queues outside the ConnectionConductor.

• Memory is not exhausted on the controller side as messages gets dropped immediately
upon an unsuccessful push to the local queue.

• The functionality cannot create back pressure at the netty level. Pressure affects the echo
message, and might cause a connection close action on the switch side.

OpenDaylight Developer Guide March 4, 2015 master

254

14. OVSDB Integration

Table of Contents
OpenDaylight OVSDB integration .. 254
Building and running OVSDB ... 257
OVSDB integration design ... 260
OpenDaylight OVSDB southbound plugin architecture and design 260
OVSDB southbound plugin .. 261
Connection service ... 261
Network Configuration Service .. 263
OpenDaylight OVSDB Developer Getting Started Video Series 267
OVSDB integration: New features .. 267

The Open vSwitch database (OVSDB) Plugin component for OpenDaylight implements
the OVSDB RFC 7047 management protocol that allows the southbound configuration
of vSwitches. The component comprises a library and various plugin usages. The OVSDB
protocol uses JSON/RPC calls to manipulate a physical or virtual switch that has OVSDB
attached to it. Almost all vendors support OVSDB on various hardware platforms. The
OpenDaylight controller uses the native OVSDB implementation to manipulate the Open
vSwitch database.

Note

Read the OVSDB User Guide before you begin development.

OpenDaylight OVSDB integration
For information on how the GRE-endpoint destination IP address is communicated to the
controller, see Neutron and ODL interactions.

The OpenStack integration architecture uses the following technologies:

• RFC 7047 and The Open vSwitch Database Management Protocol

• OpenFlow v1.3

• OpenStack Neutron ML2 Plugin

Getting the code
export ODL_USERNAME=<username for the account you created at OpenDaylight>
git clone ssh://${ODL_USERNAME}@git.opendaylight.org:29418/ovsdb.git;(cd
 ovsdb; scp -p -P 29418 ${ODL_USERNAME}@git.opendaylight.org:hooks/commit-
msg .git/hooks/;chmod 755 .git/hooks/commit-msg;git config remote.origin.push
 HEAD:refs/for/master)

https://tools.ietf.org/html/rfc7047
https://docs.google.com/presentation/d/19ua9U6nFJSO0wtenWmJUEzUFmib8ClTkkHTgZ_BvaMk/edit?pli=1#slide=id.g17727178e_180
https://tools.ietf.org/html/rfc7047
http://datatracker.ietf.org/doc/rfc7047/

OpenDaylight Developer Guide March 4, 2015 master

255

OpenDaylight Mechanism Driver for Openstack Neutron
ML2

This code is a part of OpenStack and is available at: https://github.com/openstack/
neutron/blob/master/neutron/plugins/ml2/drivers/mechanism_odl.py

To make changes to this code, please read about Neutron Development.

Before submitting the code, run the following tests:

tox -e py27
tox -e pep8

Importing the code in to Eclipse or IntelliJ

Check out either of the following:

• Getting started with Eclipse

• Developing with Intellij

https://github.com/openstack/neutron/blob/master/neutron/plugins/ml2/drivers/mechanism_odl.py
https://github.com/openstack/neutron/blob/master/neutron/plugins/ml2/drivers/mechanism_odl.py
https://wiki.openstack.org/wiki/NeutronDevelopment
https://wiki.opendaylight.org/view/Eclipse_Setup
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Developing_With_Intellij

OpenDaylight Developer Guide March 4, 2015 master

256

Figure 14.1. Avoid conflicting project names

• To ensure that a project in Eclipse does not have a conflicting name in the workspace,
select Advanced > Name Template > [groupId].[artifactId] when importing the project.

OpenDaylight Developer Guide March 4, 2015 master

257

Browsing the code

The code is mirrored to GitHub to make reading code online easier.

Source code organization

The OVSDB project generates 3 x Karaf Modules:

ovsdb -- all ovsdb related artifacts
of-nxm-extensions -- openflow nxm extensions
ovs-sfc -- openflow service chainning function

Both of-nxm-extensions and ovs-sfc are expected to be moved out of the ovsdb source tree
in the future.

Following are a brief descriptions on directories you will find a the root ovsdb/ directory:

• commons contains the parent POM file for Maven project which is used to get
consistency of settings across the project.

• distribution contains the OVSDB distribution. For OSGI, this is the latest Virtualization
Edition pulled from the Integration project with your local OVSDB artifacts added. This
gives developers the ability to run the controller for testing. For Karaf, this is the latest
Karaf bundle pulled from the Integration project, with your local OVSDB Karaf bundles
mentioned above.

• openstack contains the northbound handlers for Neutron used by OVSDB, as well as their
providers.

• resources contains useful scripts, How-To’s and other resources.

• schemas contains the OVSDB schemas that are implemented in ODL.

• utils contains helper functions used for handling MD-SAL OpenFlow implementation.

Building and running OVSDB
Prerequisites

• JDK 1.7+

• Maven 3+

Building a Karaf feature and deploying it in an
Opendaylight Karaf distribution

This is a new method for Opendaylight distribution wherein there are no defined editions
such as Base, Virtualization, or SP editions. The end-customer can choose to deploy the
required feature based on user deployment needs.

1. From the root ovsdb/ directory, run mvn clean install.

https://github.com/opendaylight/ovsdb

OpenDaylight Developer Guide March 4, 2015 master

258

2. Unzip the distribution-karaf-<VERSION_NUMBER>-SNAPSHOT.zip file created from step 1
in the directory ovsdb/distribution/opendaylight-karaf/target:

unzip distribution-karaf-<VERSION_NUMBER>-SNAPSHOT.zip

Downloading OVSDB’s Karaf distribution
Instead of building, you can download the latest OVSDB distribution from the Nexus server.
The link for that is:

http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/
opendaylight/ovsdb/distribution.ovsdb/1.2.0-SNAPSHOT/

Running Karaf feature from OVSDB’s Karaf distribution
1. Start ODL, from the unzipped directory

bin/karaf

1. Once karaf has started, and you see the Opendaylight ascii art in the console, the last
step is to start the OVSDB plugin framework with the following command in the karaf
console:

feature:install odl-ovsdb-openstack

For ovsdb northbound, you will also need to invoke

feature:install odl-ovsdb-northbound

Sample output from the Karaf console
opendaylight-user@root>feature:list | grep -i ovsdb
odl-ovsdb-all | 1.0.0-SNAPSHOT | | ovsdb-1.
0.0-SNAPSHOT
OpenDaylight :: OVSDB :: all
odl-ovsdb-library | 1.0.0-SNAPSHOT | x | ovsdb-1.
0.0-SNAPSHOT
OVSDB :: Library
odl-ovsdb-schema-openvswitch | 1.0.0-SNAPSHOT | x | ovsdb-1.
0.0-SNAPSHOT
OVSDB :: Schema :: Open_vSwitch
odl-ovsdb-schema-hardwarevtep | 1.0.0-SNAPSHOT | x | ovsdb-1.
0.0-SNAPSHOT
OVSDB :: Schema :: hardware_vtep
odl-ovsdb-plugin | 1.0.0-SNAPSHOT | x | ovsdb-1.
0.0-SNAPSHOT
OpenDaylight :: OVSDB :: Plugin
odl-ovsdb-northbound | 0.6.0-SNAPSHOT | | ovsdb-1.
0.0-SNAPSHOT
OpenDaylight :: OVSDB :: Northbound
odl-ovsdb-openstack | 1.0.0-SNAPSHOT | x | ovsdb-1.
0.0-SNAPSHOT
OpenDaylight :: OVSDB :: OpenStack Network Virtual
odl-ovsdb-ovssfc | 0.0.1-SNAPSHOT | | ovsdb-0.
0.1-SNAPSHOT
OpenDaylight :: OVSDB :: OVS Service Function Chai
odl-openflow-nxm-extensions | 0.0.3-SNAPSHOT | x | ovsdb-0.
0.3-SNAPSHOT

OpenDaylight Developer Guide March 4, 2015 master

259

OpenDaylight :: Openflow :: Nicira Extensions

Testing patches
It is recommended that you test your patches locally before submission.

Neutron integration
To test patches to the Neutron integration, you need a Multi-Node Devstack Setup. The
``resources`` folder contains sample ``local.conf`` files.

Open vSwitch
To test patches to the library, you will need a working Open vSwitch. Packages are available
for most Linux distributions. If you would like to run multiple versions of Open vSwitch for
testing you can use docker-ovs to run Open vSwitch in Docker containers.

Mininet
Mininet is another useful resource for testing patches. Mininet creates multiple Open
vSwitches connected in a configurable topology.

Vagrant
The Vagrant file in the root of the OVSDB source code provides an easy way to create VMs
for tests.

• To install Vagrant on your machine, follow the steps at: Installing Vagrant.

Testing with Devstack

1. Start the controller.

vagrant up devstack-control
vagrant ssh devstack-control
cd devstack
./stack.sh

1. Run the following:

vagrant up devstack-compute-1
vagrant ssh devstack-compute-1
cd devstack
./stack.sh

1. To start testing, create a new VM.

nova boot --flavor m1.tiny --image $(nova image-list | grep 'cirros-0.3.
1-x86_64-uec\s' | awk '{print $2}') --nic net-id=$(neutron net-list | grep
 private | awk '{print $2}') test

To create three, use the following:

nova boot --flavor m1.tiny --image $(nova image-list | grep 'cirros-0.3.
1-x86_64-uec\s' | awk '{print $2}') --nic net-id=$(neutron net-list | grep
 private | awk '{print $2}') --num-instances 3 test

http://devstack.org/guides/multinode-lab.html
http://openvswitch.org/
https://github.com/dave-tucker/docker-ovs
https://www.docker.com/
http://mininet.org/
https://docs.vagrantup.com/v2/installation/

OpenDaylight Developer Guide March 4, 2015 master

260

To get a mininet installation for testing:

vagrant up mininet
vagrant ssh mininet

1. Use the following to clean up when finished:

vagrant destroy

OVSDB integration design

Resources

See the following:

• Network Heresy

See the OVSDB YouTube Channel for getting started videos and other tutorials:

• ODL OVSDB Youtube Channel

• Mininet OVSDB Tutorial

OpenDaylight OVSDB southbound plugin
architecture and design

OpenVSwitch (OVS) is generally accepted as the unofficial standard for Virtual Switching
in the Open hypervisor based solutions. Every other Virtual Switch implementation,
properietery or otherwise, uses OVS in some form. For information on OVS, see Open
vSwitch.

In Software Defined Networking (SDN), controllers and applications interact using two
channels: OpenFlow and OVSDB. OpenFlow addresses the forwarding-side of the OVS
functionality. OVSDB, on the other hand, addresses the management-plane. A simple
and concise overview of Open Virtual Switch Database(OVSDB) is available at: http://
networkstatic.net/getting-started-ovsdb/

Overview of OpenDaylight Controller architecture

The OpenDaylight controller platform is designed as a highly modular and plugin based
middleware that serves various network applications in a variety of use-cases. The
modularity is achieved through the Java OSGi framework. The controller consists of many
Java OSGi bundles that work together to provide the required controller functionalities.

The bundles can be placed in the following broad categories:

• Network Service Functional Modules (Examples: Topology Manager, Inventory Manager,
Forwarding Rules Manager,and others)

• NorthBound API Modules (Examples: Topology APIs, Bridge Domain APIs, Neutron APIs,
Connection Manager APIs, and others)

http://networkheresy.com/2012/09/15/remembering-the-management-plane/
http://www.youtube.com/channel/UCMYntfZ255XGgYFrxCNcAzA
https://wiki.opendaylight.org/view/OVSDB_Integration:Mininet_OVSDB_Tutorial
http://openvswitch.org/
http://openvswitch.org/
http://networkstatic.net/getting-started-ovsdb/
http://networkstatic.net/getting-started-ovsdb/

OpenDaylight Developer Guide March 4, 2015 master

261

• Service Abstraction Layer(SAL)- (Inventory Services, DataPath Services, Topology Services,
Network Config, and others)

• SouthBound Plugins (OpenFlow Plugin, OVSDB Plugin, OpenDove Plugin, and others)

• Application Modules (Simple Forwarding, Load Balancer)

Each layer of the Controller architecture performs specified tasks, and hence aids in
modularity. While the Northbound API layer addresses all the REST-Based application
needs, the SAL layer takes care of abstracting the SouthBound plugin protocol specifics
from the Network Service functions.

Each of the SouthBound Plugins serves a different purpose, with some overlapping. For
example, the OpenFlow plugin might serve the Data-Plane needs of an OVS element, while
the OVSDB plugin can serve the management plane needs of the same OVS element. As
the Openflow Plugin talks OpenFlow protocol with the OVS element, the OVSDB plugin will
use OVSDB schema over JSON-RPC transport.

OVSDB southbound plugin
The Open vSwitch Database Management Protocol-draft-02 and Open vSwitch Manual
provide theoretical information about OVSDB. The OVSDB protocol draft is generic enough
to lay the groundwork on Wire Protocol and Database Operations, and the OVS Manual
currently covers 13 tables leaving space for future OVS expansion, and vendor expansions
on proprietary implementations. The OVSDB Protocol is a database records transport
protocol using JSON RPC1.0. For information on the protocol structure, see Getting Started
with OVSDB. The OpenDaylight OVSDB southbound plugin consists of one or more OSGi
bundles addressing the following services or functionalities:

• Connection Service - Based on Netty

• Network Configuration Service

• Bidirectional JSON-RPC Library

• OVSDB Schema definitions and Object mappers

• Overlay Tunnel management

• OVSDB to OpenFlow plugin mapping service

• Inventory Service

Connection service
One of the primary services that most southbound plugins provide to SAL in Opendaylight
and NSF is Connection Service. The service provides protocol specific connectivity to
network elements, and supports the connectivity management services as specified by the
OpenDaylight Connection Manager. The connectivity services include:

• Connection to a specified element given IP-address, L4-port, and other connectivity
options (such as authentication,…)

http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-02
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://networkstatic.net/getting-started-ovsdb/
http://networkstatic.net/getting-started-ovsdb/

OpenDaylight Developer Guide March 4, 2015 master

262

• Disconnection from an element

• Handling Cluster Mode change notifications to support the OpenDaylight Clustering/
High-Availability feature

By default, the ovsdb-server process running on the hypervisor listens on TCP port 6632
(This is configurable.). The Connection Service takes the connectivity parameters from the
connection manager, including the IP-address and TCP-Port for connections. Owing to
the many benefits it provides, Connection Service will use the Netty framework (http://
netty.io/) for connectivity purposes. Every successful connection to a network element will
result in a Node object (Refer to OpenDaylight SAL Node.java) with the type = "OVSDB"
and value = User-Readable Name of the Connection as specified by the Connection
Manager. This Node object is returned to the OpenDaylight Connection Manager and the
application that invoked the Connect() functionality.

IPluginInConnectionService : public Node connect(String identifier,
 Map<ConnectionConstants, String> params)

Any subsequent interaction with this network element through any of the SAL services
(Connection, Configuration, and others) will be by means of this Node Object. This Node
object will be added to the Inventory maintained and managed by the Inventory Service of
the plugin. The Node object will also assist with the OVSDB to Openflow mapping.

The Node and its "Name" holds the key to the stateful Netty Socket handler maintained
under the Connection Object created during the connect() call. The Channel concept
of the Netty framework provides the much needed abstraction on the pipelining. With
this Channel Pipelining and the asynchronous event handling, the message handling
process gets better streamlined and understood. It also makes easier the replacement or
manipulation of the pipeline functions in a more controlled fashion.

Figure 14.2. Connection to OVSDB server

http://netty.io/
http://netty.io/

OpenDaylight Developer Guide March 4, 2015 master

263

Figure 14.3. Successful connection handling

Network Configuration Service
The goal of the OpenDaylight Network Configuration services is to provide complete
management plane solutions needed to successfully install, configure, and deploy the
various SDN based network services. These are generic services which can be implemented
in part or full by any south-bound protocol plugin. The south-bound plugins can be either
of the following:

• The new network virtualization protocol plugins such as OVSDB JSON-RPC

• The traditional management protocols such as SNMP or any others in the middle.

The above definition, and more information on Network Configuration
Services, is available at : https://wiki.opendaylight.org/view/
OpenDaylight_Controller:NetworkConfigurationServices

The current default OVSDB schemas support the Layer2 Bridge Domain services as defined
in the Networkconfig.bridgedomain component.

• Create Bridge Domain: createBridgeDomain(Node node, String bridgeIdentifier,
Map<ConfigConstants, Object> params)

• Delete Bridge Domain: deleteBridgeDomain(Node node, String bridgeIdentifier)

• Add configurations to a Bridge Domain: addBridgeDomainConfig(Node node, String
bridgeIdentifier, Map<ConfigConstants, Object> params)

https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices
https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices

OpenDaylight Developer Guide March 4, 2015 master

264

• Delete Bridge Domain Configuration: removeBridgeDomainConfig(Node node, String
bridgeIdentifier, Map<ConfigConstants, Object> params)

• Associate a port to a Bridge Domain: addPort(Node node, String bridgeIdentifier, String
portIdentifier, Map<ConfigConstants, Object> params);

• Disassociate a port from a Bridge Domain: deletePort(Node node, String bridgeIdentifier,
String portIdentifier)

• Add configurations to a Node Connector / Port: addPortConfig(Node node, String
bridgeIdentifier, String portIdentifier, Map<ConfigConstants, Object> params)

• Remove configurations from a Node Connector: removePortConfig(Node node, String
bridgeIdentifier, String portIdentifier, Map<ConfigConstants, Object> params)

The above services are defined as generalized entities in SAL in order to ensure their
compatibility with all relevant southBound plugins equally. Hence, the OVSDB plugin
must derive appropriate specific configurations from a generalized request. For example:
addPort() or addPortConfig() SAL service call takes in a params option which is a Map
structure with a Constant Key. These ConfigConstants are defined in SAL network
configuration service:

public enum ConfigConstants {
 TYPE("type"),
 VLAN("Vlan"),
 VLAN_MODE("vlan_mode"),
 TUNNEL_TYPE("Tunnel Type"),
 SOURCE_IP("Source IP"),
 DEST_IP("Destination IP"),
 MACADDRESS("MAC Address"),
 INTERFACE_IDENTIFIER("Interface Identifier"),
 MGMT("Management"),
 CUSTOM("Custom Configurations");
}

These are mapped to the appropriate OVSDB configurations. So, if the request is to create
a VXLAN tunnel with src-ip=x.x.x.x, dst-ip=y.y.y.y, then the params Map structure may
contain:

{
TYPE = "tunnel",
TUNNEL_TYPE = "vxlan",
SOURCE_IP="x.x.x.x",
DEST_IP="y.y.y.y"
}

Note

All of the APIs take in the Node parameter which is the Node value returned
by the connect() method explained in the section called “Connection
service” [261].

Bidirectional JSON-RPC library
The OVSDB plugin implements a Bidirectional JSON-RPC library. It is easy to design the
library as a module that manages the Netty connection towards the Element.

OpenDaylight Developer Guide March 4, 2015 master

265

The main responsibilities of this Library are:

• Demarshal and marshal JSON Strings to JSON objects

• Demarshal and marshal JSON Strings from and to the Network Element.

OVSDB Schema definitions and Object mappers

The OVSDB Schema definitions and Object Mapping layer sits above the JSON-RPC library.
It maps the generic JSON objects to OVSDB schema POJOs (Plain Old Java Object) and vice-
versa. This layer mostly provides the Java Object definition for the corresponding OVSDB
schema (13 of them) and also will provide much more friendly API abstractions on top of
these object data. This helps in hiding the JSON semantics from the functional modules
such as Configuration Service and Tunnel management.

On the demarshaling side, the mapping logic differentiates the Request and Response
messages as follows :

• Request messages are mapped by its "method"

• Response messages are mapped by their IDs which were originally populated by the
Request message. The JSON semantics of these OVSDB schema is quite complex. The
following figures summarize two of the end-to-end scenarios:

Figure 14.4. End-to-end handling of a Create Bridge request

OpenDaylight Developer Guide March 4, 2015 master

266

Figure 14.5. End-to-end handling of a monitor response

Overlay tunnel management

Network Virtualization using OVS is achieved through Overlay Tunnels. The actual
Type of the Tunnel may be GRE, VXLAN, or STT. The differences in the encapsulation
and configuration decide the tunnel types. Establishing a tunnel using configuration
service requires just the sending of OVSDB messages towards the ovsdb-server. However,
the scaling issues that would arise on the state management at the data-plane (using
OpenFlow) can get challenging. Also, this module can assist in various optimizations in the
presence of Gateways. It can also help in providing Service guarantees for the VMs using
these overlays with the help of underlay orchestration.

OVSDB to OpenFlow plugin mapping service

The connect() of the ConnectionService would result in a Node that represents an ovsdb-
server. The CreateBridgeDomain() Configuration on the above Node would result in
creating an OVS bridge. This OVS Bridge is an OpenFlow Agent for the OpenDaylight
OpenFlow plugin with its own Node represented as (example) OF|xxxx.yyyy.zzzz. Without
any help from the OVSDB plugin, the Node Mapping Service of the Controller platform
would not be able to map the following:

{OVSDB_NODE + BRIDGE_IDENTFIER} <---> {OF_NODE}.

Without such mapping, it would be extremely difficult for the applications to manage and
maintain such nodes. This Mapping Service provided by the OVSDB plugin would essentially

OpenDaylight Developer Guide March 4, 2015 master

267

help in providing more value added services to the orchestration layers that sit atop the
Northbound APIs (such as OpenStack).

Inventory service
Inventory Service provides a simple database of all the nodes managed and maintained
by the OVSDB plugin on a given controller. For optimization purposes, it can also provide
enhanced services to the OVSDB to OpenFlow mapping service by maintaining the
following mapping owing to the static nature of this operation.

{OVSDB_NODE + BRIDGE_IDENTFIER} <---> {OF_NODE}

OpenDaylight OVSDB Developer Getting Started
Video Series

The video series were started to help developers bootstrap into OVSDB development.

• OpenDaylight OVSDB Developer Getting Started

• OpenDaylight OVSDB Developer Getting Started - Northbound API Usage

• OpenDaylight OVSDB Developer Getting Started - Java APIs

• OpenDaylight OVSDB Developer Getting Started - OpenStack Integration OpenFlow v1.0

Other developer tutorials
• OVSDB OpenFlow v1.3 Neutron ML2 Integration

• Open vSwitch Database Table Explanations and Simple Jackson Tutorial

OVSDB integration: New features

Schema independent library
The OVS connection is a node which can have multiple databases. Each database is
represented by a schema. A single connection can have multiple schemas. OSVDB supports
multiple schemas. Currently, these are two schemas available in the OVSDB, but there is no
restriction on the number of schemas. Owing to the Northbound v3 API, no code changes
in ODL are needed for supporting additional schemas.

Schemas:

• openvswitch : Schema wrapper that represents http://openvswitch.org/ovs-
vswitchd.conf.db.5.pdf

• hardwarevtep: Schema wrapper that represents http://openvswitch.org/docs/vtep.5.pdf

Northbound API v3
OVSDB supports Northbound API v3 which allows external access to all ODL OVSDB
databases or schemas. The general syntax for that API follows this format:

http://www.youtube.com/watch?v=ieB645oCIPs
http://www.youtube.com/watch?v=xgevyaQ12cg
http://www.youtube.com/watch?v=xgevyaQ12cg
http://www.youtube.com/watch?v=NayuY6J-AMA
https://wiki.opendaylight.org/view/OVSDB:OVSDB_OpenStack_Guide
http://networkstatic.net/getting-started-ovsdb/
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://openvswitch.org/docs/vtep.5.pdf

OpenDaylight Developer Guide March 4, 2015 master

268

http://{{controllerHost}}:{{controllerPort}}/ovsdb/nb/v3/node/{{OVS|HOST}}/
database

For more information on Northbound REST API see: https://docs.google.com/
spreadsheets/d/11Rp5KSNTcrvOD4HadCnXDCUdJq_TZ5RgoQ6qSHf_xkw/edit?usp=sharing

The key differences between Northbound API v2 and v3 include:

• Support for schema independence

• Formal restful style API, which includes consistent URL navigation for nodes and tables

• Ability to create interfaces and ports within a single rest call. To allow that, the JSON in
the body can include distinct parts like interface and port

Port security

Based on the fact that security rules can be obtained from a port object, OVSDB can apply
Open Flow rules. These rules will match on what types of traffic the Openstack tenant VM
is allowed to use.

Support for security groups is very experimental. There are limitations in determining
the state of flows in the Open vSwitch. See Open vSwitch and the Intelligent Edge from
Justin Petit for a deep dive into the challenges we faced creating a flow based port security
implementation. The current set of rules that will be installed only supports filtering of the
TCP protocol. This is because via a Nicira TCP_Flag read we can match on a flows TCP_SYN
flag, and permit or deny the flow based on the Neutron port security rules. If rules are
requested for ICMP and UDP, they are ignored until greater visibility from the Linux kernel
is available as outlined in the OpenStack presentation mentioned earlier.

Using the port security groups of Neutron, one can add rules that restrict the network
access of the tenants. The OVSDB Neutron integration checks the port security rules
configured, and apply them by means of openflow rules.

Through the ML2 interface, Neutron security rules are available in the port object,
following this scope: Neutron Port # Security Group # Security Rules.

The current rules are applied on the basis of the following attributes: ingress/egress, tcp
protocol, port range, and prefix.

OpenStack workflow

1. Create a stack.

2. Add the network and subnet.

3. Add the Security Group and Rules.

Note

This is no different than what users normally do in regular openstack
deployments.

neutron security-group-create group1 --description "Group 1"

https://docs.google.com/spreadsheets/d/11Rp5KSNTcrvOD4HadCnXDCUdJq_TZ5RgoQ6qSHf_xkw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/11Rp5KSNTcrvOD4HadCnXDCUdJq_TZ5RgoQ6qSHf_xkw/edit?usp=sharing
http://%20https//www.youtube.com/watch?v=DSop2uLJZS8

OpenDaylight Developer Guide March 4, 2015 master

269

neutron security-group-list
neutron security-group-rule-create --direction ingress --protocol tcp group1

1. Start the tenant, specifying the security-group.

nova boot --flavor m1.tiny \
--image $(nova image-list | grep 'cirros-0.3.1-x86_64-uec\s' | awk '{print
 $2}') \
--nic net-id=$(neutron net-list | grep 'vxlan2' | awk '{print $2}') vxlan2 \
--security-groups group1

Examples: Rules supported
neutron security-group-create group2 --description "Group 2"
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 54 group2
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 80 group2
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 1633 group2
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 22 group2

neutron security-group-create group3 --description "Group 3"
neutron security-group-rule-create --direction ingress --protocol tcp --
remote-ip-prefix 10.200.0.0/16 group3

neutron security-group-create group4 --description "Group 4"
neutron security-group-rule-create --direction ingress --remote-ip-prefix 172.
24.0.0/16 group4

neutron security-group-create group5 --description "Group 5"
neutron security-group-rule-create --direction ingress --protocol tcp group5
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 54 group5
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 80 group5
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 1633 group5
neutron security-group-rule-create --direction ingress --protocol tcp --port-
range-min 22 group5

neutron security-group-create group6 --description "Group 6"
neutron security-group-rule-create --direction ingress --protocol tcp --
remote-ip-prefix 0.0.0.0/0 group6

neutron security-group-create group7 --description "Group 7"
neutron security-group-rule-create --direction egress --protocol tcp --port-
range-min 443 --remote-ip-prefix 172.16.240.128/25 group7

Reference gist:https://gist.github.com/anonymous/1543a410d57f491352c8[Gist]

Security group rules supported in ODL

The following rules formata are supported in the current implementation. The direction
(ingress/egress) is always expected. Rules are implemented such that tcp-syn packets that
do not satisfy the rules are dropped.

Proto Port IP Prefix

TCP x x

OpenDaylight Developer Guide March 4, 2015 master

270

Proto Port IP Prefix

Any Any x

TCP x Any

TCP Any Any

Limitations

• Soon, conntrack will be supported by OVS. Until then, TCP flags are used as way of
checking for connection state. Specifically, that is done by matching on the TCP-SYN flag.

• The param --port-range-max in security-group-rule-create is not used until the
implementation uses contrack.

• No UDP/ICMP specific match support is provided.

• No IPv6 support is provided.

L3 forwarding

OVSDB extends support for the usage of an ODL-Neutron-driver so that OVSDB can
configure OF 1.3 rules to route IPv4 packets. The driver eliminates the need for the router
of the L3 Agent. In order to accomplish that, OVS 2.1 or a newer version is required. OVSDB
also supports inbound/outbound NAT, floating IPs.

Starting OVSDB and OpenStack

1. Build or download OVSDB distribution, as mentioned in building a Karaf feature section.

2. Install Vagrant.

1. Enable the L3 Forwarding feature:

echo 'ovsdb.l3.fwd.enabled=yes' >> ./opendaylight/configuration/config.ini
echo 'ovsdb.l3gateway.mac=${GATEWAY_MAC}' >> ./configuration/config.ini

1. Run the following commands to get the odl neutron drivers:

git clone https://github.com/dave-tucker/odl-neutron-drivers.git
cd odl-neutron-drivers
vagrant up devstack-control devstack-compute-1

1. Use ssh to go to the control node, and clone odl-neutron-drivers again:

vagrant ssh devstack-control
git clone https://github.com/dave-tucker/odl-neutron-drivers.git
cd odl-neutron-drivers
sudo python setup.py install
leave this shell open

1. Start odl, as mentioned in running Karaf feature section.

2. To see processing of neutron event related to L3, do this from prompt:

log:set debug org.opendaylight.ovsdb.openstack.netvirt.impl.NeutronL3Adapter

http://docs.vagrantup.com/v2/installation/index.html

OpenDaylight Developer Guide March 4, 2015 master

271

1. From shell, do one of the following: open on ssh into control node or vagrant ssh
devstack-control.

cd ~/devstack && ./stack.sh

1. From a new shell in the host system, run the following:

cd odl-neutron-drivers
vagrant ssh devstack-compute-1
cd ~/devstack && ./stack.sh

OpenStack workflow

Figure 14.6. Sample workflow

Use the following steps to set up a workflow like the one shown in figure above.

1. Set up authentication. From shell on stack control or vagrant ssh devstack-control:

source openrc admin admin

rm -f id_rsa_demo* ; ssh-keygen -t rsa -b 2048 -N -f id_rsa_demo
 nova keypair-add --pub-key id_rsa_demo.pub demo_key
 # nova keypair-list

1. Create two networks and two subnets.

neutron net-create net1 --tenant-id $(keystone tenant-list | grep '\s'admin |
 awk '{print $2}') \
 --provider:network_type gre --provider:segmentation_id 555

neutron subnet-create --tenant-id $(keystone tenant-list | grep '\s'admin |
 awk '{print $2}') \
net1 10.0.0.0/16 --name subnet1 --dns-nameserver 8.8.8.8

neutron net-create net2 --tenant-id $(keystone tenant-list | grep '\s'admin |
 awk '{print $2}') \
 --provider:network_type gre --provider:segmentation_id 556

OpenDaylight Developer Guide March 4, 2015 master

272

neutron subnet-create --tenant-id $(keystone tenant-list | grep '\s'admin |
 awk '{print $2}') \
 net2 20.0.0.0/16 --name subnet2 --dns-nameserver 8.8.8.8

1. Create a router, and add an interface to each of the two subnets.

neutron router-create demorouter --tenant-id $(keystone tenant-list | grep '\
s'admin | awk '{print $2}')
 neutron router-interface-add demorouter subnet1
 neutron router-interface-add demorouter subnet2
 # neutron router-port-list demorouter

1. Create two tenant instances.

nova boot --poll --flavor m1.nano --image $(nova image-list | grep 'cirros-0.
3.2-x86_64-uec\s' | awk '{print $2}') \
 --nic net-id=$(neutron net-list | grep -w net1 | awk '{print $2}'),v4-fixed-
ip=10.0.0.10 \
 --availability-zone nova:devstack-control \
 --key-name demo_key host10

nova boot --poll --flavor m1.nano --image $(nova image-list | grep 'cirros-0.
3.2-x86_64-uec\s' | awk '{print $2}') \
 --nic net-id=$(neutron net-list | grep -w net2 | awk '{print $2}'),v4-fixed-
ip=20.0.0.20 \
 --availability-zone nova:devstack-compute-1 \
 --key-name demo_key host20

Limitations

• To use this feature, you need OVS 2.1 or newer version.

• Owing to OF limitations, icmp responses due to routing failures, like ttl expired or host
unreacheable, are not generated.

• The MAC address of the default route is not automatically mapped. In order to route
to L3 destinations outside the networks of the tenant, the manual configuration of
the default route is necessary. To provide the MAC address of the default route, use
ovsdb.l3gateway.mac in file configuration/config.ini ;

• This feature is Tech preview, which depends on later versions of OpenStack to be used
without the provided neutron-driver.

• No IPv6 support is provided.

More information on L3 forwarding:

• odl-neutron-driver: https://github.com/dave-tucker/odl-neutron-drivers

• OF rules example: http://dtucker.co.uk/hack/building-a-router-with-openvswitch.html

LBaaS

Load-Balancing-as-a-Service (LBaaS) creates an Open vSwitch powered L3-L4 stateless load-
balancer in a virtualized network environment so that individual TCP connections destined
to a designated virtual IP (VIP) are sent to the appropriate servers (that is to say, serving

https://github.com/dave-tucker/odl-neutron-drivers
http://dtucker.co.uk/hack/building-a-router-with-openvswitch.html

OpenDaylight Developer Guide March 4, 2015 master

273

app VMs). The load-balancer works in a session-preserving, proactive manner without
involving the controller during flow setup.

A Neutron northbound interface is provided to create a VIP which will map to a pool of
servers (that is to say, members) within a subnet. The pools consist of members identified
by an IP address. The goal is to closely match the API to the OpenStack LBaaS v2 API:
http://docs.openstack.org/api/openstack-network/2.0/content/lbaas_ext.html.

Creating an OpenStack workflow

1. Create a subnet.

2. Create a floating VIP A that maps to a private VIP B.

3. Create a Loadbalancer pool X.

neutron lb-pool-create --name http-pool --lb-method ROUND_ROBIN --protocol
 HTTP --subnet-id XYZ

1. Create a Loadbalancer pool member Y and associate with pool X.

neutron lb-member-create --address 10.0.0.10 --protocol-port 80 http-pool
neutron lb-member-create --address 10.0.0.11 --protocol-port 80 http-pool
neutron lb-member-create --address 10.0.0.12 --protocol-port 80 http-pool
neutron lb-member-create --address 10.0.0.13 --protocol-port 80 http-pool

1. Create a Loadbalancer instance Z, and associate pool X and VIP B with it.

neutron lb-vip-create --name http-vip --protocol-port 80 --protocol HTTP --
subnet-id XYZ http-pool

Implementation

The current implementation of the proactive stateless load-balancer was made using
"multipath" action in the Open vSwitch. The "multipath" action takes a max_link parameter
value (which is same as the number of pool members) as input, and performs a hash of the
fields to get a value between (0, max_link). The value of the hash is used as an index to
select a pool member to handle that session.

Open vSwitch rules

Assuming that table=20 contains all the rules to forward the traffic destined for a specific
destination MAC address, the following are the rules needed to be programmed in the
LBaaS service table=10. The programmed rules makes the translation from the VIP to a
different pool member for every session.

• Proactive forward rules:

sudo ovs-ofctl -O OpenFlow13 add-flow s1 "table=10,reg0=0,ip,nw_dst=10.0.0.5,
actions=load:0x1->NXM_NX_REG0[[]],multipath(symmetric_l4, 1024, modulo_n, 4,
 0, NXM_NX_REG1[0..12]),resubmit(,10)"
sudo ovs-ofctl -O OpenFlow13 add-flow s1 table=10,reg0=1,nw_dst=10.0.0.5,ip,
reg1=0,actions=mod_dl_dst:00:00:00:00:00:10,mod_nw_dst:10.0.0.10,goto_table:20
sudo ovs-ofctl -O OpenFlow13 add-flow s1 table=10,reg0=1,nw_dst=10.0.0.5,ip,
reg1=1,actions=mod_dl_dst:00:00:00:00:00:11,mod_nw_dst:10.0.0.11,goto_table:20

http://docs.openstack.org/api/openstack-network/2.0/content/lbaas_ext.html

OpenDaylight Developer Guide March 4, 2015 master

274

sudo ovs-ofctl -O OpenFlow13 add-flow s1 table=10,reg0=1,nw_dst=10.0.0.5,ip,
reg1=2,actions=mod_dl_dst:00:00:00:00:00:12,mod_nw_dst:10.0.0.12,goto_table:20
sudo ovs-ofctl -O OpenFlow13 add-flow s1 table=10,reg0=1,nw_dst=10.0.0.5,ip,
reg1=3,actions=mod_dl_dst:00:00:00:00:00:13,mod_nw_dst:10.0.0.13,goto_table:20

• Proactive reverse rules:

sudo ovs-ofctl -O OpenFlow13 add-flow s1 table=10,ip,tcp,tp_src=80,actions=
mod_dl_src:00:00:00:00:00:05,mod_nw_src:10.0.0.5,goto_table:20

OVSDB project code

The current implementation handles all neutron calls in the net-virt/LBaaSHandler.java
code, and makes calls to the net-virt-providers/LoadBalancerService to program
appropriate flowmods. The rules are updated whenever there is a change in the Neutron
LBaaS settings. There is no cache of state kept in the net-virt or providers.

Limitations

Owing to the inflexibility of the multipath action, the existing LBaaS implementation comes
with some limitations:

• TCP, HTTP or HTTPS are supported protocols for the pool. (Caution: You can lose access
to the members if you assign {Proto:TCP, Port:22} to LB)

• Member weights are ignored.

• The update of an LB instance is done as a delete + add, and not an actual delta.

• The update of an LB member is not supported (because weights are ignored).

• Deletion of an LB member leads to the reprogramming of the LB on all nodes (because
of the way multipath does link hash).

• There is only a single LB instance per subnet because the pool-id is not reported in the
create load-balancer call.

OpenDaylight Developer Guide March 4, 2015 master

275

15. Packet Cable MultiMedia (PCMM)

Table of Contents
Checking out the Packetcable PCMM project ... 275
System Overview ... 275
Dependency Map .. 276
Packetcable Components ... 276
Download and Install .. 277
Preparing to Work with the Packetcable PCMM Service ... 277
Explore and exercise the PacketCable REST API .. 281
RESTCONF API Explorer ... 281
Postman .. 282
Custom Testsuite ... 282
Using Wireshark to Trace PCMM ... 282
Debugging and Verifying DQoS Gate (Flows) on the CMTS .. 283
Find the Cable Modem .. 283
Arris .. 285
RESTCONF API for Packetcable PCMM ... 285

Checking out the Packetcable PCMM project
git clone https://git.opendaylight.org/gerrit/p/packetcable.git

The above command will create a directory called "packetcable" with the project.

System Overview
These components introduce a DOCSIS QoS Service Flow management using the PCMM
protocol. The driver component is responsible for the PCMM/COPS/PDP functionality
required to service requests from PacketCable Provider and FlowManager. Requests are
transposed into PCMM Gate Control messages and transmitted via COPS to the CMTS.
This plugin adheres to the PCMM/COPS/PDP functionality defined in the CableLabs
specification. PacketCable solution is an MD-SAL compliant component.

OpenDaylight Developer Guide March 4, 2015 master

276

Figure 15.1. System Overview

Dependency Map
Figure 15.2. Dependency Map

Packetcable Components
packetcable is comprised of three OpenDaylight bundles

Table 15.1. Table of Bundle and Components

Bundle Description

packetcable-model Contains the YANG information model for flows and
nodes

OpenDaylight Developer Guide March 4, 2015 master

277

Bundle Description

packetcable-provider Provider hosts the model processing, RESTCONF, API
implementation, and brokers requests to consumer

packetcable-driver Driver manages PCMM Gate message over COPS for flows
and CMTS connections

packetcable-consumer Consumer is the codec for for transforming the model of
nodes and flows to COPS Gate messages

See YANG Model

Download and Install
Current instructions

Download
Download

http://nexus.opendaylight.org/content/groups/staging/org/opendaylight/integration/
distribution-karaf/

Unzip
unzip distribution-karaf-0.2.0-Helium.zip

Run Karaf
cd distribution-karaf-0.2.0-Helium/bin/
./karaf

Preparing to Work with the Packetcable PCMM
Service

Minimum install procedure
opendaylight-user@root>feature:install odl-packetcable-all

Useful Features to Start with PCMM
opendaylight-user@root>feature:install odl-restconf odl-l2switch-switch odl-
dlux-core odl-mdsal-apidocs odl-packetcable-all

Auto Starting a Series of Bundles using Karaf
Edit etc/org.apache.karaf.features.cfg ‘featuresBoot'

#
Comma separated list of features to install at startup
#
featuresBoot=config,standard,region,package,kar,ssh,management,odl-restconf,
odl-l2switch-switch,odl-dlux-core,odl-mdsal-apidocs,odl-packetcable-all

https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-model/src/main/yang
http://nexus.opendaylight.org/content/groups/staging/org/opendaylight/integration/distribution-karaf/0.2.0-Helium/distribution-karaf-0.2.0-Helium.zip
http://nexus.opendaylight.org/content/groups/staging/org/opendaylight/integration/distribution-karaf/
http://nexus.opendaylight.org/content/groups/staging/org/opendaylight/integration/distribution-karaf/

OpenDaylight Developer Guide March 4, 2015 master

278

Starting Karaf as System Service
cd distribution-karaf-0.2.0-Helium/
sudo bin/start

Accessing the Karaf Console

 ssh -p 8101 karaf@localhost

Add These Directives to Your Operating System Profile to Change the
Karaf Startup Parameters for Troubleshooting

 export KARAF_DEBUG=true
 export JAVA_DEBUG_OPTS="-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005"

Tell a Bundle to Log Debug

 log:set org.opendaylight.packetcable

Management UI

http://localhost:8181/dlux/index.html

user admin

password admin

Sign in

http://localhost:8181/dlux/index.html

OpenDaylight Developer Guide March 4, 2015 master

279

Figure 15.3. Sign in to Dlux UI

Manage Flows

OpenDaylight Developer Guide March 4, 2015 master

280

Figure 15.4. View and Manage Flows in Dlux

Manage Nodes

Figure 15.5. View and Manage Nodes in Dlux

OpenDaylight Developer Guide March 4, 2015 master

281

Explore and exercise the PacketCable REST API
http://localhost:8181/apidoc/explorer/index.html

RESTCONF API Explorer
http://localhost:8181/apidoc/explorer/index.html

Add a CMTS to Opendaylight Inventory

Figure 15.6. Add CMTS using RESTCONF Explorer

http://localhost:8181/apidoc/explorer/index.html
http://localhost:8181/apidoc/explorer/index.html

OpenDaylight Developer Guide March 4, 2015 master

282

Postman
Configure the Chrome browser

Download and import sample packetcable collection for Postman.

Figure 15.7. Postman Collection for Packetcable PCMM

Custom Testsuite
Most of the tests for RESTCONF can be adapted for PCMM and service flow testing. The
following list of Packetcable client testing. Browse this folder for tests and examples used
for testing.

restconfapi.py

Scripted series of packetcable actions testing compliance. Other flows can be formulated
and added to create a regression test of what kind of flows are interesting for use cases.

flow_config_perf_pcmm.py

For load testing there is this nice tool that could be repurpose to load test a CMTS.

Using Wireshark to Trace PCMM
To start wireshark with privileges issue the following command:

sudo wireshark &

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-client

OpenDaylight Developer Guide March 4, 2015 master

283

Select the interface to monitor.

Use the Filter to only display COPS messages by applying “cops” in the filter field. .Using
Wireshark to View COPS image::pcmm-wireshark.png["Wireshark",width=500]

Debugging and Verifying DQoS Gate (Flows) on
the CMTS

Below are some of the most useful CMTS commands to verify flows have been enabled on
the CMTS.

Cisco
Cisco CMTS Cable Command Reference

Find the Cable Modem
10k2-DSG#show cable modem

 D
MAC Address IP Address I/F MAC Prim RxPwr Timing
 Num I
 State Sid (dBmv) Offset
 CPE P
0010.188a.faf6 0.0.0.0 C8/0/0/U0 offline 1 0.00 1482
 0 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431
 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507
 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 1.00 1677
 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419
 1 Y

Show PCMM Plugin Connection
10k2-DSG#show packetcabl ?
 cms Gate Controllers connected to this PacketCable client
 event Event message server information
 gate PacketCable gate information
 global PacketCable global information

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg
10.32.0.240 54238 10.32.15.3 0x4B9C8150/1 4.0 0 0 0

Show COPS Messages
debug cops details

http://www.cisco.com/c/en/us/td/docs/cable/cmts/cmd_ref/b_cmts_cable_cmd_ref.pdf

OpenDaylight Developer Guide March 4, 2015 master

284

Use CM Mac Address to List Service Flows
10k2-DSG#show cable modem

 D
MAC Address IP Address I/F MAC Prim RxPwr Timing
 Num I
 State Sid (dBmv) Offset
 CPE P
0010.188a.faf6 --- C8/0/0/UB w-online 1 0.50 1480
 1 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431
 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507
 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0.00 1677
 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419
 1 Y

10k2-DSG#show cable modem 000e.0900.00dd service-flow

SUMMARY:
MAC Address IP Address Host MAC Prim Num Primary
 DS
 Interface State Sid CPE
 Downstream RfId
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0 Mo8/0/2:1
 2353

Sfid Dir Curr Sid Sched Prio MaxSusRate MaxBrst MinRsvRate
 Throughput
 State Type
23 US act 3 BE 0 0 3044 0 39
30 US act 16 BE 0 500000 3044 0 0
24 DS act N/A N/A 0 0 3044 0 17

UPSTREAM SERVICE FLOW DETAIL:

SFID SID Requests Polls Grants Delayed Dropped Packets
 Grants Grants
23 3 784 0 784 0 0 784
30 16 0 0 0 0 0 0

DOWNSTREAM SERVICE FLOW DETAIL:

SFID RP_SFID QID Flg Policer Scheduler FrwdIF
 Xmits Drops Xmits Drops
24 33019 131550 0 0 777 0 Wi8/0/2:2

Flags Legend:
$: Low Latency Queue (aggregated)
~: CIR Queue

OpenDaylight Developer Guide March 4, 2015 master

285

Deleting a PCMM Gate Message from the CMTS
10k2-DSG#test cable dsd 000e.0900.00dd 30

Find service flows

All gate controllers currently connected to the PacketCable client are displayed

show cable modem 00:11:22:33:44:55 service flow ????
show cable modem

Debug and display PCMM Gate messages
debug packetcable gate control
debug packetcable gate events
show packetcable gate summary
show packetcable global
show packetcable cms

Debug COPS messages
debug cops detail
debug packetcable cops
debug cable dynamic_qos trace

Arris
Pending

RESTCONF API for Packetcable PCMM

CMTS

CMTS can be read, created, updated and deleted by a user having the correct role. An ID is
used to identify where to read or save the CMTS node.

Read

URL /restconf/config/opendaylight-inventory:nodes/node/[id]/packetcable-cmts:cmts-node/

Method GET

Request Body {}

Response Body {}

Return Codes 201

Create

URL /restconf/config/opendaylight-inventory:nodes/node/[id]/packetcable-cmts:cmts-node/

Method PUT

OpenDaylight Developer Guide March 4, 2015 master

286

Request Body {
 "packetcable-cmts:cmts-node": {
 "port": "3918",
 "address": "10.200.90.3"
 }
}

Response Body {}

Return Codes 201

Delete

URL /restconf/config/opendaylight-inventory:nodes/node/[id]/packetcable-cmts:cmts-node/

Method DELETE

Request Body {}

Response Body {}

Return Codes 201

Flows

Flows can be read, created, updated and deleted by a user having the correct role. A CMTS
ID is used to identify which CMTS node to read or save the flow. Note: The Table ID is not
used.

Read

URL /restconf/config/opendaylight-inventory:nodes/node/[cmts id]/table/0/flow/[flow id]

Method GET

Request Body {}

Response Body {
 "flow": {
 "cookie": "101",
 "cookie_mask": "255",
 "flow-name": "FooXf7",
 "hard-timeout": "1200",
 "id": "256",
 "idle-timeout": "3400",
 "installHw": "false",
 "instructions": {
 "instruction": {
 "apply-actions": {
 "action": {
 "order": "0",
 "traffic-profile": "best-effort"
 }
 },
 "order": "0"
 }
 },
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": "34525"
 }
 },
 "ip-match": {
 "ip-dscp": "60",
 "ip-ecn": "3",
 "ip-protocol": "6"
 },
 "ipv6-destination": "fe80:2acf:e9ff:fe21::6431/94",
 "ipv6-source": "1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76",
 "tcp-destination-port": "8080",
 "tcp-source-port": "183"
 },

OpenDaylight Developer Guide March 4, 2015 master

287

 "priority": "2",
 "strict": "false",
 "table_id": "2"
 }
}

Create

URL /restconf/config/opendaylight-inventory:nodes/node/[cmts id]/table/0/flow/[flow id]

Method PUT

Request Body {
 "flow": {
 "barrier": "false",
 "flow-name": "FooXCableFlowCrazyTrafficProfileFBesteffort1",
 "id": "115",
 "installHw": "false",
 "instructions": {
 "instruction": {
 "apply-actions": {
 "action": {
 "traffic-profile": "best-effort",
 "be-authorized-envelope": {
 "traffic-priority":"0",
 "reserved0":"0",
 "reserved1":"0",
 "request-transmission-policy":"0",
 "maximum-sustained-traffic-rate":"0",
 "maximum-traffic-burst":"3044",
 "maximum-reserved-traffic-rate":"0",
 "traffic-rate-packet-size-maximum-concatenated-
burst":"0",
 "assumed-minimum-reserved":"1522",
 "required-attribute-mask":"0",
 "forbidden-attribute-mask":"0",
 "attribute-aggregation-rule-mask":"0",
 },
 "be-reserved-envelope": {
 "traffic-priority":"0",
 "reserved0":"0",
 "reserved1":"0",
 "request-transmission-policy":"0",
 "maximum-sustained-traffic-rate":"0",
 "maximum-traffic-burst":"3044",
 "maximum-reserved-traffic-rate":"0",
 "traffic-rate-packet-size-maximum-concatenated-
burst":"0",
 "assumed-minimum-reserved":"1522",
 "required-attribute-mask":"0",
 "forbidden-attribute-mask":"0",
 "attribute-aggregation-rule-mask":"0",
 },
 "be-committed-envelope": {
 "traffic-priority":"0",
 "reserved0":"0",
 "reserved1":"0",
 "request-transmission-policy":"0",
 "maximum-sustained-traffic-rate":"0",
 "maximum-traffic-burst":"3044",
 "maximum-reserved-traffic-rate":"0",
 "traffic-rate-packet-size-maximum-concatenated-
burst":"0",
 "assumed-minimum-reserved":"1522",
 "required-attribute-mask":"0",
 "forbidden-attribute-mask":"0",
 "attribute-aggregation-rule-mask":"0",
 }

 "order": "0"
 }
 },
 "order": "0"
 }
 },
 "match": {
 "ethernet-match": {
 "ethernet-type": {

OpenDaylight Developer Guide March 4, 2015 master

288

 "type": "2048"
 }
 },
 "ipv4-destination": "10.0.0.1/24"
 },
 "priority": "2",
 }
}

Response Body {}

Return Codes 201

Delete

URL /restconf/config/opendaylight-inventory:nodes/node/[cmts id]/table/0/flow/[flow id]

Method DELETE

Request Body {}

Response Body {}

Return Codes 201

Specifications and References

The packetcable-driver was written to the PacketCable Specification Multimedia
Specification PKT-SP-MM-I05-091029

http://www.cablelabs.com/wp-content/uploads/specdocs/PKT-SP-MM-I05-091029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/PKT-SP-MM-I05-091029.pdf

OpenDaylight Developer Guide March 4, 2015 master

289

16. Plugin for OpenContrail
The Developer Guide for the Plugin for OpenContrail can be found
on the OpenDaylight wiki here: https://wiki.opendaylight.org/view/
Southbound_Plugin_to_the_OpenContrail_Platform:Developer_Guide

https://wiki.opendaylight.org/view/Southbound_Plugin_to_the_OpenContrail_Platform:Developer_Guide
https://wiki.opendaylight.org/view/Southbound_Plugin_to_the_OpenContrail_Platform:Developer_Guide

OpenDaylight Developer Guide March 4, 2015 master

290

17. Service Function Chaining
More information on Service Function Chaining can be found on the OpenDaylight wiki
here: https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

OpenDaylight Developer Guide March 4, 2015 master

291

18. SNBI Developers' Guide

Table of Contents
Defining characteristics of SNBI bootstrapping ... 291
SNBI components .. 291
How SNBI works ... 292

The Secure Network Bootstrapping Infrastructure (SNBI) component of OpenDaylight
automatically creates secure IP connectivity between a set of forwarding elements (devices)
and the controller.

Defining characteristics of SNBI bootstrapping
In the SNBI context, network bootstrapping involves discovering the device, authenticating
a device, and installing the device domain certificate so that it becomes part of an
administrative domain ("SNBI domain").

SNBI bootstrapping is:

• Secure: Only devices on the white list of the SNBI registrar are allowed into a domain.
The RA (Registrar Authority) and the CA (Certificate Authority) ensure that a secure
channel of communication is established between the SNBI registrar and the devices, and
also between the devices. SNBI uses Bouncy Castle to run the CA and sign certificates.

• Automatic: Normal network bootstrapping involves the manual configuration of
network connectivity. To secure any control protocol connecting to the device, one
typically needs to manually install certificates. SNBI fully automates the configuration of
network connectivity (incl. IP address assignment, routing protocol configuration, and
others) as well as the distribution and installation of certificates.

SNBI components
An SNBI implementation includes SNBI controllers and forwarding elements.

• Forwarding element component (SNBI agent) The software package for secure discovery
service is created and integrated with the network container reference platform for the
devices.

• Controller components:

• SNBI Registrar: The north-bound configuration manager that configures the south-
bound SNBI plugin.

The registrar establishes trust in a network domain thereby anchoring it.

The SNBI registrar does the following:

OpenDaylight Developer Guide March 4, 2015 master

292

• Maintains the white list of devices which belong to a domain. An administrator
sets a white list for the registrar for every domain.

• Decides in accordance with policy rules as to which devices are admitted to a
domain.

• Manages certificates: Issues, renews, and revokes certificates as a CA. Certificate
management is fully self-contained in the SNBI solution.

• SNBI plugin The secure discovery service is a southbound plugin that runs the SNBI
protocol.

Forwarding element components

The SNBI functions in the Forwarding Elements (FEs) are implemented inside lightweight
portable foundations.

Portable Foundation

The SNBI portable foundation can use any light weight portable foundation technology
that provides a protected and isolated application execution environment. The current
SNBI implementation utilizes Docker, a light weight portable foundation mechanism
supported by the current Linux kernels.

How SNBI works
An administrator plugs in a device thereby introducing it into a domain. When a
forwarding element discovers the new device, it acts as an intermediary between the new
device and the registrar, and proxies all device requests to the registrar.

A device gets a neighbour invite request from the registrar which is forwarded by a proxy
forwarding element. The device presents its Unique Device Identifier (UDI) to the registrar
through the proxy. The UDI could be anything, a serial number, an 802.1AR compliant
identifier, or others. The proxy sends the credentials to the registrar for validation. Upon
validation, the device sends a Certificate Sign Request (CSR) PKCS10 request and gets it
signed by the CA running at the SNBI Registrar. The CA enrols and signs an x.509 certificate.

The device gets a domain name and ID. The device uses the domain name and ID to also
derive its IPv6 which it will use to communicate with other SNBI agents over the secure
channel.

Bootstrapping a device using SNBI

To bootstrap a device using SNBI:

1. In the Yang model of the REST API for SNBI, enter the names of devices per domain to
be bootstrapped. The registrar includes this information in its white list: s/Yang/YANG/.

2. Plug in the device to be bootstrapped.

OpenDaylight Developer Guide March 4, 2015 master

293

Controller and FE communications

Figure 18.1. Communication between the controller and FE

SNBI between controller and portable foundation The SNBI-plugin on the Controller
and the SNBI agent on the "first hop" FE establishes a DTLS/SSL connection to secure their
communication. It is assumed that the device or server which runs the Controller runs an
instance of the portable foundation or container. This allows for SNBI to automatically
establish a secure IP connectivity throughout the network without the need to pre-
configure any IP connectivity between the devices in the network. If the Controller is
hosted on a device which does not run an instance of an SNBI-agent within a portable
foundation, then IP connectivity between the Controller and the "first hop" FE which runs
an instance of an SNBI-agent within a portable foundation needs to be configured by other
means (for example, manually). s/portable foundation or container/portable foundation/

It is recommended that the Controller always be hosted on a device (server) which also runs
an instance of the SNBI-agent within the portable foundation.

SNBI agent discovery SNBI-agents discover each other through a discovery protocol.

Secure communication between devices SNBI agents establish a secure channel among
themselves, which is typically an IPsec connection. Once the secure channel is established,
other services running on the same host (be it a forwarding element or a controller) can
leverage the secure IP connectivity for their means. In Figure 1, an example "protocol
x plugin" leverages the secure channel to communicate between different instances of
protocol x. Example protocols which could use the secure channel include OpenFlow, and
Netconf. The protocols need not establish their own secure transport (for example, using
DTLS/SSL). Any protocol can, of course, establish its own additional secure transport on top
of the already secure connectivity provided by SNBI.

Configuration control between SNBI-agent and underlying host OS An SNBI-agent hosted
in a portable foundation controls and retrieves certain configuration parameters through a
RESTconf/Netconf interface. This includes:

• The establishment and configuration of the secure channel (that is to say, the IPsec
connection).

• Routing table control.

• The retrieval of a UDI.

OpenDaylight Developer Guide March 4, 2015 master

294

The configuration interface between portable foundation and underlying host is based
on standard IETF YANG models (RFC 7223 for interface configuration, draft-ietf-netmod-
routing-cfg for route management, and others).

This approach decouples the underlying host and its configuration specifics from the
portable foundation hosting environment, and allows for the simplified portability of the
portable foundation.

Benefits of SNBI discovery

The automatic discovery between SNBI devices and controllers:

• Reveals the physical topology of the network thus supporting network management

• Exposes a device as either a forwarding element or a controller

• Associates a device to an administrative domain

• Makes possible the initiation of controller federation processes through device type and
domain information

The SNBI component of the OpenDaylight Controller automatically creates secure network
connectivity between devices. This connectivity can be leveraged by other features and
functions to for example to install, control and manage the life cycle of additional software
components hosted within the portable foundation of a forwarding element.. The
portable foundation built on container technology can be extended to support additional
orchestration and configuration management functions.

SNBI: Non-ODL technologies used

• Yang models: The SNBI APIs are defined through Yang.

RFC 6020 ‘YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF) is available at: http://tools.ietf.org/html/rfc6020

• Docker SNBI uses lightweight portable foundations to implement SNBI functions in FEs.
The SNBI portable foundation in the current implementation uses Docker and Linux
kernels. SNBI uses Docker to start the portable foundation in a host, and pass needed
parameters, such as the CID, by means of environment variables into the container.

Information on the Docker open platform is available at: https://www.docker.com/

SNBI terms and definitions

SNBI Domain A logical set of devices with common goals

Registrar SNBI software that acts as a domain trust anchor,
incorporating both RA and CA functions to bootstrap new
devices

UDI Unique device identifier

FE Forwarding element

https://tools.ietf.org/html/rfc7223
http://tools.ietf.org/html/rfc6020
https://www.docker.com/

OpenDaylight Developer Guide March 4, 2015 master

295

Portable foundation Reference environment to host network functions, like the
SNBI-agent, on devices. The PF provides infrastructure to help
host network-centric software components on devices while
decoupling them from the Linux distribution and software load
of the underlying host.

SNBI RA The Registration Authority module that authenticates new
devices

SNBI CA The Certificate Authority module that signs device certificates

OpenDaylight Developer Guide March 4, 2015 master

296

19. SNMP4SDN
The Developer Guide for SNMP4SDN can be found on the OpenDaylight wiki here: https://
wiki.opendaylight.org/view/SNMP4SDN:Helium_Developer_Guide

https://wiki.opendaylight.org/view/SNMP4SDN:Helium_Developer_Guide
https://wiki.opendaylight.org/view/SNMP4SDN:Helium_Developer_Guide

OpenDaylight Developer Guide March 4, 2015 master

297

20. TCP-MD5
The Developer Guide for TCP-MD5 can be found on the OpenDaylight wiki here: https://
wiki.opendaylight.org/view/TCPMD5:Helium_Developer_Guide

https://wiki.opendaylight.org/view/TCPMD5:Helium_Developer_Guide
https://wiki.opendaylight.org/view/TCPMD5:Helium_Developer_Guide

OpenDaylight Developer Guide March 4, 2015 master

298

21. Table Type Patterns

Table of Contents
Introduction .. 298
Using The REST APIs .. 299
Limitations ... 309

Important

This section assumes you have already downloaded the Karaf distribution of
OpenDaylight Helium and followed the instructions in the Table Type Patterns
section of the Installation guide. If not, do that first.

Introduction
Table Type Patterns are a specification developed by the Open Networking Foundation
to enable the description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it enables the to
describe what features they do (and thus also what features they do not) support. More
details can be found in the full specification listed on the OpenFlow specifications page.

Support in Helium

In the Helium release, Table Type Patterns (TTPs) are exposed as a YANG model for TTPs
themselves which can be loaded into the MD-SAL Data Store in three places:

1. As one of a list of TTPs in the opendaylight-ttps top-level container.

2. Attached to a node in the opendaylight-inventory model as an active_ttp via
the ttp-capable-node augmentation.

3. Attached to a node in the opendaylight-inventory model as one of a list of
supported_ttps via the ttp-capable-node augmentation. // link to the inventory
docs somehow?

Each of these points can be accessed either through the RESTCONF-based REST APIs or via
the Java interface to the MD-SAL Data Store. This discussion will focus on the REST APIs.

Note

Developers who wish to use the Java interfaces are encouraged to to first
read and understand using the MD-SAL Data Store’s APIs including importing
the appropriate bundles for to get models, dealing with transactions, and
constructing instance identifiers.

After that, it should be somewhat straightforward to translate the REST API
calls here into appropriate instance identifiers which can be used in MD-SAL
Data Store transactions.

https://www.opennetworking.org/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow

OpenDaylight Developer Guide March 4, 2015 master

299

Using The REST APIs
As stated above there are 3 locations where a Table Type Patter can be placed into the MD-
SAL Data Store. They correspond to 3 different REST API URIs:

1. restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-
patterns/

2. restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-
inventory-node:active_ttp/

3. restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-
inventory-node:supported_ttps/

Note

Typically, these URIs are running on the machine the controller is on at port
8181. If you are on the same machine they can thus be accessed at http://
localhost:8181/<uri>

Setting REST HTTP Headers

Authentication

The REST API calls require authentication by default. The default method is to use basic
auth with a user name and password of ‘admin’.

Content-Type and Accept

RESTCONF supports both xml and json. This example focuses on JSON, but xml can be used
just as easily. When doing a PUT or POST be sure to specify the appropriate Conetnt-
Type header: either application/json or application/xml.

When doing a GET be sure to specify the appropriate Accept header: again, either
application/json or application/xml.

Content
The contents of a PUT or POST should be a OpenDaylight Table Type Pattern. An example
of one is provided below. The example can also be found at parser/sample-TTP-
from-tests.ttp in the TTP git repository.

Sample Table Type Pattern (json).

{
 "table-type-patterns": {
 "table-type-pattern": [
 {
 "security": {
 "doc": [
 "This TTP is not published for use by ONF. It is an
 example and for",
 "illustrative purposes only.",
 "If this TTP were published for use it would include",

http://localhost:8181/<uri>
http://localhost:8181/<uri>
https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=parser/sample-TTP-from-tests.ttp;h=45130949b25c6f86b750959d27d04ec2208935fb;hb=HEAD
https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=parser/sample-TTP-from-tests.ttp;h=45130949b25c6f86b750959d27d04ec2208935fb;hb=HEAD

OpenDaylight Developer Guide March 4, 2015 master

300

 "guidance as to any security considerations in this
 doc member."
]
 },
 "NDM_metadata": {
 "authority": "org.opennetworking.fawg",
 "OF_protocol_version": "1.3.3",
 "version": "1.0.0",
 "type": "TTPv1",
 "doc": [
 "Example of a TTP supporting L2 (unicast, multicast,
 flooding), L3 (unicast only),",
 "and an ACL table."
],
 "name": "L2-L3-ACLs"
 },
 "identifiers": [
 {
 "doc": [
 "The VLAN ID of a locally attached L2 subnet on a
 Router."
],
 "var": "<subnet_VID>"
 },
 {
 "doc": [
 "An OpenFlow group identifier (integer)
 identifying a group table entry",
 "of the type indicated by the variable name"
],
 "var": "<<group_entry_types/name>>"
 }
],
 "features": [
 {
 "doc": [
 "Flow entry notification Extension – notification
 of changes in flow entries"
],
 "feature": "ext187"
 },
 {
 "doc": [
 "Group notifications Extension – notification of
 changes in group or meter entries"
],
 "feature": "ext235"
 }
],
 "meter_table": {
 "meter_types": [
 {
 "name": "ControllerMeterType",
 "bands": [
 {
 "type": "DROP",
 "rate": "1000..10000",
 "burst": "50..200"
 }
]

OpenDaylight Developer Guide March 4, 2015 master

301

 },
 {
 "name": "TrafficMeter",
 "bands": [
 {
 "type": "DSCP_REMARK",
 "rate": "10000..500000",
 "burst": "50..500"
 },
 {
 "type": "DROP",
 "rate": "10000..500000",
 "burst": "50..500"
 }
]
 }
],
 "built_in_meters": [
 {
 "name": "ControllerMeter",
 "meter_id": 1,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 2000,
 "burst": 75
 }
]
 },
 {
 "name": "AllArpMeter",
 "meter_id": 2,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 1000,
 "burst": 50
 }
]
 }
]
 },
 "table_map": [
 {
 "name": "ControlFrame",
 "number": 0
 },
 {
 "name": "IngressVLAN",
 "number": 10
 },
 {
 "name": "MacLearning",
 "number": 20
 },
 {
 "name": "ACL",
 "number": 30
 },
 {

OpenDaylight Developer Guide March 4, 2015 master

302

 "name": "L2",
 "number": 40
 },
 {
 "name": "ProtoFilter",
 "number": 50
 },
 {
 "name": "IPv4",
 "number": 60
 },
 {
 "name": "IPv6",
 "number": 80
 }
],
 "parameters": [
 {
 "doc": [
 "documentation"
],
 "name": "Showing-curt-how-this-works",
 "type": "type1"
 }
],
 "flow_tables": [
 {
 "doc": [
 "Filters L2 control reserved destination addresses
 and",
 "may forward control packets to the controller.",
 "Directs all other packets to the Ingress VLAN
 table."
],
 "name": "ControlFrame",
 "flow_mod_types": [
 {
 "doc": [
 "This match/action pair allows for
 flow_mods that match on either",
 "ETH_TYPE or ETH_DST (or both) and send
 the packet to the",
 "controller, subject to metering."
],
 "name": "Frame-To-Controller",
 "match_set": [
 {
 "field": "ETH_TYPE",
 "match_type": "all_or_exact"
 },
 {
 "field": "ETH_DST",
 "match_type": "exact"
 }
],
 "instruction_set": [
 {
 "doc": [
 "This meter may be used to limit
 the rate of PACKET_IN frames",

OpenDaylight Developer Guide March 4, 2015 master

303

 "sent to the controller"
],
 "instruction": "METER",
 "meter_name": "ControllerMeter"
 },
 {
 "instruction": "APPLY_ACTIONS",
 "actions": [
 {
 "action": "OUTPUT",
 "port": "CONTROLLER"
 }
]
 }
]
 }
],
 "built_in_flow_mods": [
 {
 "doc": [
 "Mandatory filtering of control frames
 with C-VLAN Bridge reserved DA."
],
 "name": "Control-Frame-Filter",
 "priority": "1",
 "match_set": [
 {
 "field": "ETH_DST",
 "mask": "0xfffffffffff0",
 "value": "0x0180C2000000"
 }
]
 },
 {
 "doc": [
 "Mandatory miss flow_mod, sends packets to
 IngressVLAN table."
],
 "name": "Non-Control-Frame",
 "priority": "0",
 "instruction_set": [
 {
 "instruction": "GOTO_TABLE",
 "table": "IngressVLAN"
 }
]
 }
]
 }
],
 "group_entry_types": [
 {
 "doc": [
 "Output to a port, removing VLAN tag if needed.",
 "Entry per port, plus entry per untagged VID per
 port."
],
 "name": "EgressPort",
 "group_type": "INDIRECT",
 "bucket_types": [

OpenDaylight Developer Guide March 4, 2015 master

304

 {
 "name": "OutputTagged",
 "action_set": [
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "name": "OutputUntagged",
 "action_set": [
 {
 "action": "POP_VLAN"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "opt_tag": "VID-X",
 "name": "OutputVIDTranslate",
 "action_set": [
 {
 "action": "SET_FIELD",
 "field": "VLAN_VID",
 "value": "<local_vid>"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 }
]
 }
],
 "flow_paths": [
 {
 "doc": [
 "This object contains just a few examples of flow
 paths, it is not",
 "a comprehensive list of the flow paths required
 for this TTP. It is",
 "intended that the flow paths array could include
 either a list of",
 "required flow paths or a list of specific flow
 paths that are not",
 "required (whichever is more concise or more
 useful."
],
 "name": "L2-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Unicast",

OpenDaylight Developer Guide March 4, 2015 master

305

 "EgressPort"
]
 },
 {
 "name": "L2-3",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Multicast",
 "L2Mcast",
 "[EgressPort]"
]
 },
 {
 "name": "L2-4",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACL-skip",
 "VID-flood",
 "VIDflood",
 "[EgressPort]"
]
 },
 {
 "name": "L2-5",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Drop"
]
 },
 {
 "name": "v4-1",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",
 "v4-Unicast",
 "NextHop",
 "EgressPort"
]
 },
 {
 "name": "v4-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",

OpenDaylight Developer Guide March 4, 2015 master

306

 "v4-Unicast-ECMP",
 "L3ECMP",
 "NextHop",
 "EgressPort"
]
 }
]
 }
]
 }
}

Making a REST Call

In this example we’ll do a PUT to install the sample TTP from above into OpenDaylight and
then retrieve it both as json and as xml. We’ll use the Postman - REST Client for Chrome in
the examples, but any method of accessing REST should work.

First, we’ll fill in the basic information:

Figure 21.1. Filling in URL, content, Content-Type and basic auth

1. Set the URL to http://localhost:8181/restconf/config/onf-
ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

2. Set the action to PUT

3. Click Headers and

4. Set a header for Content-Type to application/json

5. Make sure the content is set to raw and

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

OpenDaylight Developer Guide March 4, 2015 master

307

6. Copy the sample TTP from above into the content

7. Click the Basic Auth tab and

8. Set the username and password to admin

9. Click Refresh headers

Figure 21.2. Refreshing basic auth headers

After clicking Refresh headers, we can see that a new header (Authorization) has been
created and this will allow us to authenticate to make the rest call.

OpenDaylight Developer Guide March 4, 2015 master

308

Figure 21.3. PUTting a TTP

At this point, clicking send should result in a Status response of 200 OK indicating we’ve
successfully PUT the TTP into OpenDaylight.

Figure 21.4. Retrieving the TTP as json via a GET

We can now retrieve the TTP by:

OpenDaylight Developer Guide March 4, 2015 master

309

1. Changing the action to GET

2. Setting an Accept header to application/json and

3. Pressing send

Figure 21.5. Retrieving the TTP as xml via a GET

The same process can retrieve the content as xml by setting the Accept header to
application/xml.

Limitations

Differences between OpenDaylight TTP and ONF TTP
The OpenDaylight YANG specification for TTPs differs from the ONF’s specification in a few
areas. These differences are due to limitations in the subsets of JSON that YANG schemas
can be used to describe.

• doc members must always be lists and cannot be just a string

For example, this is not allowed:

"doc": "The VLAN ID of a locally attached L2 subnet on a Router."

While this is:

"doc": ["The VLAN ID of a locally attached L2 subnet on a Router."]

• table_map formats differ

In the ONF spec, the table_map looks like this

OpenDaylight Developer Guide March 4, 2015 master

310

"table_map": {
 "ControlFrame": 0,
 "IngressVLAN": 1,
 "MacLearning": 2,
 "L2": 3
},

In the ODL TTP YANG definition, it would instead look like this:

"table_map": [
 { "name": "ControlFrame", "number": 0 },
 { "name": "IngressVLAN", "number": 1 },
 { "name": "MacLearning", "number": 2 },
 { "name": "L2", "number": 3 },
],

• Limited meta member keywords

The meta member keywords (all, one_or_more, zero_or_more, exactly_one, and
zero_or_one) are allowed anywhere in a TTP according to the ONF specification, but
they are only allowed in specific locations in the ODL YANG schema. Specifically:

a. all, one_or_more, and zero_or_more are allowed in the flow_mod_types
member

b. exactly_one and zero_or_one are allowed in the match_set and
instruction_set members as well as in in lists of actions.

• flow_paths repeated table syntax differs

In the ONF TTP specification, the ability to repeat a table in a path traversal of the tables is
done by having the table be a list containing the table name as a string. Like this:

"flow_paths": ["path": ["table1", ["table2"]]]

In the ODL YANG schema this is instead represented by moving the square brackets inside
the string as follows:

flow_paths": ["path": ["table1", "[table2]"]]

• *priority and priority_rank must be strings and can’t be numbers.

The priority and priority_rank members are allowed to be either strings or
numbers in the ONF specification, but must be strings in the ODL YANG schema.

• Empty lists must be omitted

Lists like this:

"match_set": []

must instead be omitted from the TTP.

Strictly Informational

At this point in time the only operations available with TTPs are storing and retrieving TTPs
from the data store in the three previously mentioned places.

OpenDaylight Developer Guide March 4, 2015 master

311

Additional features that make use of and populate this information are planned for future
releases.

Known issues

1. Strings containing some special characters result in REST calls returning a 400 Bad
Request code. A string that contains both an opening angle bracket (<) and a colon (:)
with the angle bracket appearing first is known to trigger this behavior.

For example this is known to break RESTCONF:

"var": "<<group_entry_types:name>>"

While these two work

"var": "group_entry_types:name"

"var": "<<group_entry_types/name>>"

OpenDaylight Developer Guide March 4, 2015 master

312

22. VTN

Table of Contents
Virtual Tenant Network (VTN) ... 312
Hacking VTN Coordinator .. 326
Hacking VTN Manager .. 329
Hacking VTN Manager(Helium) ... 330
Openstack Support Developer Guide ... 332

Virtual Tenant Network (VTN)

OpenDaylight Virtual Tenant Network (VTN) Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant
virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating expenses are
needed because the network is configured as a silo for each department and system.
Therefore various network appliances must be installed for each tenant and those boxes
cannot be shared with others. It is a heavy work to design, implement and operate
the entire complex network. The uniqueness of VTN is a logical abstraction plane. This
enables the complete separation of logical plane from physical plane. Users can design
and deploy any desired network without knowing the physical network topology or
bandwidth restrictions. VTN allows the users to define the network with a look and feel of
conventional L2/L3 network. Once the network is designed on VTN, it will automatically
be mapped into underlying physical network, and then configured on the individual switch
leveraging SDN control protocol. The definition of logical plane makes it possible not only
to hide the complexity of the underlying network but also to better manage network
resources. It achieves reducing reconfiguration time of network services and minimizing
network configuration errors.OpenDaylight Virtual Tenant Network (VTN) is an application
that provides multi-tenant virtual network on an SDN controller. It provides API for creating
a common virtual network irrespective of the physical network.

It is implemented as two major components

• the section called “VTN Coordinator” [313]

• the section called “VTN Manager” [315]

OpenDaylight Developer Guide March 4, 2015 master

313

Figure 22.1. VTN Architecture

VTN Coordinator

The VTN coordinator is an external application that provides a REST interface to user to
use the VTN Virtualization. It interacts with VTN Manager plugin to implement the user
configuration. It is also capable of multiple controller orchestration.realizes Virtual Tenant
Network (VTN) provisioning in OpenDaylight Controllers (ODC). In the OpenDaylight
architecture VTN Coordinator is part of the network application, orchestration and
services layer. VTN Co ordinator has been implemented as an external application to the
OpenDaylight controller. This component is responsible for the VTN virtualization. VTN
Coordinator will use the REST interface exposed by the VTN Manger to realize the virtual
network using the OpenDaylight controller. It uses OpenDaylight APIs (REST) to construct
the virtual network in ODCs. It provides REST APIs for northbound VTN applications and
supports virtual networks spanning across multiple ODCs by coordinating across ODCs.

OpenDaylight Developer Guide March 4, 2015 master

314

Figure 22.2. VTN Coordinator Architecture

VTN Co ordinator has the following components:

• VTN API - VTN Web API module provides the north bound REST API interface for VTN
applications. For more information about VTN API, see the section called “VTN Service
Java API Library” [317].

• Transaction Co ordinator(TC) - The TC module is a two Phase commit coordinator module
that provides the two phase commit coordination functionality for VTN coordinator
components.

• Unified Provider Physical Layer (UPPL) - The UPPL module is a physical network
provisioning/monitoring module. This module is a sub component of the VTN
coordinator and provides the physical network provisioning and monitoring
functionality.

• Unified Provider Logical Layer (UPLL) - The UPLL is a virtual network provisioning/
monitoring module. This module is a a sub component of the VTN coordinator and
provides the Virtual network provisioning and monitoring functionality.

• OpenDaylight Controller Driver (ODC Driver) - The OpenDaylight controller interface
Module is a sub component of the VTN coordinator and provides mechanisms to
provision and monitor virtual networks in the OpenDaylight controller.

Communication Framework

You could communication with and from the VTN using the following:

• Internal communication

OpenDaylight Developer Guide March 4, 2015 master

315

• Proprietary IPC framework

• External communication

• North Bound – REST API

• South Bound – OpenDaylight API

VTN Manager

A OpenDayLight Controller Plugin that interacts with other modules to implement
the components of the VTN model. It also provides a REST interface to configure VTN
components in ODL controller.VTN Manager is implemented as one plugin to the
OpenDayLight controller. This provides a REST interface to create/update/delete VTN
components. The user command in VTN Coordinator is translated as REST API to VTN
Manager by the ODC Driver component. In addition to the above mentioned role, it also
provides an implementation to the Openstack L2 Network Functions API.

Figure 22.3. VTN Manager Architecture

Function Outline

The table identifies the functions and the interface used by VTN Components:

Component Interface Purpose

VTN Manager RESTful API Configure VTN Virtualization model
components in OpenDayLight

VTN Manager Neutron API implementation Handle Networks API from OpenStack
(Neutron Interface)

VTN Co ordinator RESTful API (1) Uses the Restful interface of
VTN Manager and configures VTN
Virtualization model components in
OpenDayLight. (2) Handles multiple
controller orchestration. (3) Provides
API to read the physical network
details. See samples for usage. —

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:L2_Network_Example_Using_VTN_Virtualization

OpenDaylight Developer Guide March 4, 2015 master

316

OpenDaylight Virtual Tenant Network (VTN) API Overview

The VTN API module is a sub component of the VTN coordinator and provides the north
bound REST API interface for VTN applications It consists of two subcomponents:

• the section called “Web Server” [316]

• the section called “VTN Service Java API Library” [317]

Figure 22.4. VTN Coordinator Architecture

Web Server

The Web Server module handles the REST APIs received from the VTN applications. It
translates the REST APIs to the appropriate Java APIs.

The main functions of this module are:

• Starts via the startup script catalina.sh.

• VTN Application sends HTTP request to Web server in XML or JSON format.

• Creates a session and acquire a read/write lock.

• Invokes the the section called “VTN Service Java API Library” [317] corresponding to
the specified URI.

• Returns the response to the VTN Application.

WebServer Class Details

The table below lists the classes available for Web Server module and its descriptions:

Class Name Description

InitManager It is a singleton class for executing the acquisition of
configuration information from properties file, log
initialization, initialization of the section called “VTN
Service Java API Library” [317]. Executed by init() of
VtnServiceWebAPIServlet.

OpenDaylight Developer Guide March 4, 2015 master

317

Class Name Description

ConfigurationManager Maintains the configuration information acquired from
properties file.

VtnServiceCommonUtil Utility class

VtnServiceWebUtil Utility class

VtnServiceWebAPIServlet Receives HTTP request from VTN Application and calls
the method of corresponding VtnServiceWebAPIHandler.
Inherits class HttpServlet, and overrides doGet(), doPut(),
doDelete(), doPost().

VtnServiceWebAPIHandler Creates JsonObject(com.google.gson) from HTTP
request, and calls method of corresponding
VtnServiceWebAPIController.

VtnServiceWebAPIController Creates RestResource() class and calls UPLL API/UPPL API
through Java API. At the time of calling UPLL API/UPPL
API, performs the creation/deletion of session, acquisition/
release of configuration mode, acquisition/release of read
lock by TC API through Java API.

DataConverter Converts HTTP request to JsonObject and JsonXML to
JSON.

VTN Service Java API Library

It provides the Java API library to communicate with the lower layer modules in the VTN
coordinator.

The main functions of this library are:

• Creates an IPC client session to the lower layer.

• Converts the request to IPC framework format.

• Invokes the lower layer API (i.e. UPPL API, UPLL API, TC API).

• Returns the response from the lower layer to the web server

• VTN Service Java API LIbrary Class Details*

The table below lists the classes available for VTN Service Java API library module and its
descriptions:

Class Name Description

VtnServiceInitManager It is a Singleton class for executing the acquisition of
configuration information from properties file, log
initialization. Executed by init() of Web API Servlet.

VtnServiceConfiguration Class to maintain the configuration information acquired
from properties file.

IpcConnPool Class that mains Connection pool of IPC.

IpcChannelConnection Class that mains Connections of IPC.

RestResource The class that will be interface for Web API Servlet.
Implementation of Interface VtnServiceResource.

AnnotationReflect Performs the mapping of path filed value of RestRsource
class and xxxResource class.

xxxResource The class that is created according to the path filed value
of RestResource. (vtnResource, VBridgeResource etc)
Inherits abstract class AbstractResource.

OpenDaylight Developer Guide March 4, 2015 master

318

Class Name Description

xxxResourceValidator CommonValidator The class that performs the appropriateness check of
values specified in the path, query, request field of
RestResource class.

IpcPhysicalResponseFactory The class to create JsonObject from the response received
from the section called “VTN Unified Provider Logical
Layer (UPLL)” [322].

IpcRequestProcessor Sends request to the section called “VTN Unified Provider
Logical Layer (UPLL)” [322] or the section called “VTN
Unified Provider Logical Layer (UPLL)” [322] through
proprietary IPC Framework. UPLL API and UPPL APIs are
implemented on proprietary IPC Framework, and request/
response is defined by special interface called as Key
Interface.

IpcRequestPacket The class that maintains the request to be sent to the
section called “VTN Unified Provider Logical Layer
(UPLL)” [322]/the section called “VTN Unified Provider
Logical Layer (UPLL)” [322].

IpcStructFactory The class to create Key Structure and Value Structure
that will be included in the request to be sent to the
section called “VTN Unified Provider Logical Layer
(UPLL)” [322]/the section called “VTN Unified Provider
Logical Layer (UPLL)” [322].

VTN Transaction Coordinator (TC) Overview

The TC module provides the two phase commit coordination functionality for VTN
coordinator components. It consists of two subcomponents

• Transaction Coordinator (TC)

• Transaction Coordinator Library (TCLIB)

Figure 22.5. VTN Transaction Co ordinator (TC) Architecture

Transaction Coordinator (TC)

The Transaction Coordinator module implements the two phase commit operation.

The main functions of this module are:

• TC is started from uncd daemon during startup of VTN coordinator.

• Responsible for two phase commit operation in VTN

OpenDaylight Developer Guide March 4, 2015 master

319

• Receives requests from the section called “VTN Service Java API Library” [317] during
Commit and Audit operations.

• Invokes lower layer TCLIB API (i.e. UPLL API, UPPL API or ODC Driver API) via IPC
framework.

Transaction Coordinator (TC) Class Details

The table below lists the classes available for TC module and its descriptions:

Class Name Description

TcModule Main interface which offers the services to VTN Service
library. It also handles state transitions.

TcOperations Base class that services every operation request in TC.

TcMsg The message to be sent for every operation has different
characteristics based on the type of message. This base
class will provide methods to handle different types of
messages to the intended recipients.

TcLock The exclusion control class, an object of TcLock is
contained in TcModule and used for every operation.

TcDbHandler Utility class for TC database operations.

TcTaskqUtil Utility class for taskq used in TC for driver triggered audit
and read operations.

Transaction Coordinator Library

It provides the Java API library to communicate with the lower layer modules in the VTN
coordinator.

The main functions of this library are:

• TCLIB will be loaded as a module in UPLL, UPPL and ODC Driver daemon.

• Responsible for handling messages to the daemons from TC.

• The daemons will install their handler with TCLIB, the handlers will be invoked on
receiving messages from TC.

Transaction Co ordinator Library Class Details

The table below lists the classes available for Transaction Co ordinator library module and
its descriptions:

Class Name Description

TcLibModule Main class which handles requests from TC module.

TcLibInterface Abstract class which every module implements to interact
with TC module. Member of TcLibModule.

TcLiBMsgUtil Internal utility class for extracting session attributes of
every request from TC.

VTN OpenDaylight Controller Driver (ODC Driver) Overview

The ODC driver module is a sub component of the VTN coordinator and provides
mechanisms to provision and monitor virtual networks and monitor physical networks in

OpenDaylight Developer Guide March 4, 2015 master

320

the OpenDaylight controller. ODC driver is started during startup of VTN coordinator It
consists of two sub components:

• Common Driver Framework (CDF)

• ODC Driver

Figure 22.6. VTN ODC Driver Architecture

Common Driver Framework (CDF)

CDF provides a controller independent processing of the messages sent from UPLL and
UPPL modules.

The main functions of the CDF module are:

• Isolate the driver modules from processing messages sent by UPLL and UPPLmodules.

• Provide interfaces to the driver module to install their commands for various operations
on the controller (eg: VTN creation).

• Provide controller management and support different types of controllers.

• Parse messages and invoke driver methods with appropriate parameters.

• Provide interface for different drivers to install command handlers.

• Simplify transaction processing with simplified transaction functions for vote and commit
operations.

• Support for parallel update operation across many controllers.

• The framework can be extended to support all driver modules in a common daemon or
individual daemons.

CDF is implemented using the following modules:

• vtndrvintf: Implements the features of CDF listed above.

OpenDaylight Developer Guide March 4, 2015 master

321

Class Details The following table lists the class details for vtndrvintf module:

Class Name Description

VtnDrvIntf Inherited from Module class and provides the entry point
for messages from platform. Provides interfaces to add
drivers for different types of controllers.

KtHandler Abstract interface for handling different message types.

KtRequestHandler Template implementation of KtHandler to process all
messages from platform.

DriverTxnInterface Common transaction handling for drivers.

ControllerFramework Provides methods to add/delete/update Controllers to the
VTN Coordinator. Periodic monitoring of controllers

• vtncacheutil: Utility module that provides interfaces for caching configuration entries to
validate as a whole and then later commit

Class Details The following table lists the class details for vtncacheutil module:

Class Name Description

keytree Cache container that provides interfaces to append config
to cache.

CommonIterator Provides methods to iterate the elements in cache, the
option to iterate in VTN hierarchical order is also available.

ODC Driver

The ODC driver module implements the interfaces for controller connection management
and virtual network provisioning and monitoring in the ODC controller. The request will be
translated to the appropriate REST APIs and sent to the controller. ODC driver is capable of
translating the VTN Operations as Commands to VTN Manager in the ODL.

The above features are implemented using these modules

• restjsonutil: Utility module that provides services for JSON build/parse and handling REST
Request/Response.

The following table lists the class details for restjsonutil module:

Class Name Description

HttpClient Interface to set up and maintain a connection to an HTTP
Web service

RestClient Interface to handle request/response on a REST Interface

JsonBuildParse Interface for building/parsing the JSON strings for
communication

• odcdriver:

• Implements the interfaces exposed by CDF

• Registers the driver for controllers of type : ODC (OpenDaylight Controllers)

• Uses the restjsonutil to communicate

OpenDaylight Developer Guide March 4, 2015 master

322

The following table lists the class details for restjsonutil module:

Class Name Description

OdcModule Module implementation of odc driver, registers itself as
diver for controllers of ODL type

ODCController Implements the various methods according to the features
of the ODL Controller.

ODCVTNCommand Handle Create/Update/Delete/Read requests for VTN.

ODCVBRCommand Handle Create/Update/Delete/Read requests for vBridge .

ODCVBRIfCommand Handle Create/Update/Delete/Read requests for vBridge
interfaces.

VTN Unified Provider Logical Layer (UPLL)

The UPLL module is a sub component of the VTN coordinator and provides the Virtual
network provisioning and monitoring functionality. It consists of two sub components:

• UPLL

• DAL

Figure 22.7. VTN UPLL Architecture

UPLL Functionalities

The main functions of this module are:

• UPLL is started from lgcnwd daemon during startup of VTN coordinator.

• Interacts with TC, UPPL and ODC Driver using IPC framework.

• Receives virtual network configuration Create/Update/Delete/Read requests from VTN
service.

• Maintains the startup, candidate, and running configurations and state information in an
external database

• Performs the Setup/Commit/Abort operations as instructed by TC.

OpenDaylight Developer Guide March 4, 2015 master

323

• Connects to southbound controllers via ODC Driver.

• Constructs and maintains the virtual network topology using the configuration and
notifications (events and alarms) received from controller platforms.

• Supports Audit and Import functionality for the virtual network configurations.

UPLL Class Details

The table below lists the classes available for UPLL module and its descriptions:

Class Name Description

UpllConfigSvc UpllConfigService is a service layer implementation for
UPLL. It provides UPLL service to VTN Service and handles
all service requests. It also registers with UPPL and Drivers
for notifications.

UpllIpcEventHandler Handler for IPC events.

UpllConfigMgr UpllConfigMgr is the core implementation class for
configuration services and transaction services including
audit and import.

TcLibIntfImpl This an implementation class which implements the
TcLibInterface provided by TC. This implementation
class, for each virtual function, will invoke corresponding
UpllConfigMgr function.

MoCfgServiceIntf Interface class for Edit/Read/Control operations.

MoTxServiceIntf Interface class for normal transaction operations.

MoAuditServiceIntf Interface class for audit operations.

MoImportServiceIntf Interface class for import operations.

MoDbServiceIntf Interface class for database operations.

MoManager Base class for Key tree specific implementation.

CtrlrMgr Stores the controllers as notified by Physical. UPLL stores
the controller type and "invalid config" alarm status
against each known controller type.

ConfigVal Class for value structure of any key type. This class allows
list of values to be specified.

ConfigKeyVal Handler for IPC events

UpllConfigMgr Class for additional data after the request/response
header in messages corresponding to configuration
operations. This class allows nesting of key types and
values. For one key type many values can be specified
and sequence of such <key, value, …> tuples can be
encapsulated with one ConfigKeyVal

ConfigNotification Implements config notification.

ConfigNotifier Implements buffering and sending of config notifications.
Also provides API for OperStatus change notification.

IpcUtil Provides various IPC wrappers over the IPC framework.

IpctSt Provides wrappers for data sent over IPC.

Key type specific classes Implements the Key type handling functionality for all key
types.

DAL Functionalities

The DAL Module implements the abstraction layer for the Database.

DAL Class Details

OpenDaylight Developer Guide March 4, 2015 master

324

The table below lists the classes available for DAL module and its descriptions:

Class Name Description

DalBindColumnInfo Contains column_info for each column_index
(column_index, app_data_type, dal_data_type,
app_array_size). Contains bind_info (app_out_addr,
db_in_out_addr, db_match_addr, io_type). Allocates
memory in DB and copies input/match application data.
Copies result from DB to application data.

DalBindInfo Contains bind_info for all columns in a table (table_index,
list of DalBindColumnInfo. Provides API to UPLL to bind
the input/output/match address to DB And to copy result
back to application.

DalCursor Holds cursor information. Holds cursor data to fetch result
one by one in case of multi-result query. Provides API
to UPLL to fetch the result from cursor and destroy the
cursor. Creation of cursor will be done in DalOdbcMgr
based on the Query API.

DalQueryBuilder Contains list of Query Templates and generates Query
based on user inputs.

DalErrorHandler Process SQL errors and maps to corresponding DB result
code.

DalOdbcMgr Provides APIs to UPLL for Connection/Disconnection,
Commit/Rollback operation, Cursor fetch/Close cursor, All
Single/Multiple result queries Diff, Copy Queries.

VTN Unified Provider Physical Layer (UPPL)

The UPPL module is a sub component of the VTN coordinator and provides the Physical
network provisioning and monitoring functionality.

Figure 22.8. VTN UPPL Architecture

UPPL Functionalities

UPPL provides the following functionalities:

• UPPL is started from phynwd daemon during startup of VTN coordinator.

• Interacts with TC, UPLL and ODC Driver using IPC framework

OpenDaylight Developer Guide March 4, 2015 master

325

• Receives Controller, Domain and Boundary Create/Update/Delete/Read requests from
VTN Services

• Maintains the startup, candidate, and running configurations and state information in an
external database

• Performs the setup/commit/abort operations as instructed by TC.

• Connects to southbound controllers via ODC Driver

• Constructs physical topology using the notifications (events and alarms) from controller
platform.

• Informs UPLL about the controller addition/deletion and operational status changes of
physical topology objects.

UPPL Class Details

The table below lists the classes available for UPPL module and its descriptions:

Class Name Description

PhysicalLayer It’s a singleton class which will instantiate other UPPL’s
classes. This class will be inherited from base module in
order to use the Core features and IPC service handlers.

PhysicalCore Class that is responsible for processing requests from VTN
Transaction Coordinator. It also:

* Processes the configuration and capability file. *
Responsible for sending alarm to node manager. *
Responsible for receiving requests from north bound.

IPCConnectionManager It is responsible for processing the requests received via
IPC framework. It contains separate classes to process
request from VTN_Service_Java_API_library, Unified
Provider Logical Layer (UPLL), OpenDaylight Controller
Driver. For more information about the modules
mentioned, see VTN Co ordinator Architecture

ODBCManager It is a singleton class which performs all database services.

InternalTransactionCoordinator It is responsible for parsing the IPC structures and forward
it to the various request classes like ConfigurationRequest,
ReadRequest, ImportRequest etc.

ConfigurationRequest It is responsible to process the Create, Delete and Update
operations received from the section called “VTN Service
Java API Library” [317].

ReadRequest It is responsible to process all the read operations.

Kt_Base, Kt_State_Base and respective Kt classes These classes perform the functionality required for
individual key type.

TransactionRequest It is responsible for performing the various functions
required for each phase of the Transaction Request
received from Transaction Coordinator during User
Commit/Abort.

AuditRequest It is responsible for performing functions related to audit
request.

ImportRequest It is responsible for performing functions related to import
request.

SystemStateChangeRequest It is responsible for performing functions when the section
called “VTN Coordinator” [313] state is moved to active
or standby.

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Transaction_Coordinator#Transaction_Coordinator%7C
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Transaction_Coordinator#Transaction_Coordinator%7C
https://wiki.opendaylight.org/view/Release/Hydrogen/VTN/Developer_Guide

OpenDaylight Developer Guide March 4, 2015 master

326

Class Name Description

DBConfigurationRequest It is responsible for processing various Database
operations like Save/Clear/Abort

Usage Examples

• L2 Network using Single Controller

Hacking VTN Coordinator

Prior preparation

1. Arrange a server with any one of the supported 64-bit OS environment.

• RHEL 6 / 7

• CentOS 6 / 7

• Fedora(19/20)

• Ubuntu (12.04/12.10/13.04/14.04)

• Install necessary packages.

• RHEL/Fedora/Cent OS

 yum install make glibc-devel gcc gcc-c++ boost-devel openssl-devel \
 ant perl-ExtUtils-MakeMaker unixODBC-devel perl-Digest-SHA uuid libxslt
 libcurl libcurl-devel git

• Ubuntu 13.10/14.04

 apt-get install pkg-config gcc make ant g++ maven git libboost-dev
 libcurl4-openssl-dev \
 libjson0-dev libssl-dev openjdk-7-jdk unixodbc-dev xmlstarlet

• Ubuntu 12.04

 apt-get install pkg-config gcc make ant g++ maven git libboost-dev
 libcurl4-openssl-dev \
 libssl-dev openjdk-7-jdk unixodbc-dev

Note

Install libjson0-dev from packages of ubuntu versions (>12.04)

• Install JDK 7, and add the JAVA_HOME environment variable (Only for RHEL/Cent OS/
Fedora)

• RHEL 6.1/Cent OS 6.1

1. Download Oracle JDK 7 from the following page, and install it. http://
www.oracle.com/technetwork/java/javase/downloads/index.html

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_configure_L2_Network_with_Single_Controller
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

OpenDaylight Developer Guide March 4, 2015 master

327

2. Set JAVA_HOME to the location of the JDK.

 export JAVA_HOME=/usr/java/default

• RHEL 6.4,Cent OS 6.4 ,Fedora (17,20)

1.Install OpenJDK 7.

yum install java-1.7.0-openjdk-devel

2. Set JAVA_HOME to the location of the JDK.

export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk.x86_64

• Preperation for Execution

• RHEL 6/Fedora/Cent OS 6

 Download the following PostgreSQL 9.1 files (latest versions) from http:/
/yum.postgresql.org/9.1/redhat/rhel-6.4-x86_64/ (RHEL 6.4) or http://yum.
postgresql.org/9.1/redhat/rhel-6.1-x86_64/ (RHEL 6.1)and install.
postgresql91-libs
postgresql91
postgresql91server
postgresql91-contrib
postgresql91-odbc

Note

The above procedure caters only for RHEL 6, For Fedora and CentOS, Please
visit http://yum.postgresql.org and install the corresponding rpm for the
particular version of Linux distro

• RHEL 7/Cent OS 7

1. Download and install the Postgres 9.3 by installing the rpm NOTE: For RHEL 7, Please
install the below rpm

 rpm -ivh http://yum.postgresql.org/9.3/redhat/rhel-7-x86_64/pgdg-
redhat93-9.3-1.noarch.rpm
 yum install postgresql93-libs postgresql93 postgresql93-server postgresql93-
contrib postgresql93-odbc

Note

For Cent OS 7, Please install the below rpm

 rpm -ivh http://yum.postgresql.org/9.3/redhat/rhel-7-x86_64/pgdg-centos93-9.
3-1.noarch.rpm
 yum install postgresql93-libs postgresql93 postgresql93-server postgresql93-
contrib postgresql93-odbc

• Ubuntu 13.10/12.04

 apt-get install postgresql-9.1 postgresql-client-9.1 postgresql-client-
common postgresql-contrib-9.1 odbc-postgresql

http://yum.postgresql.org

OpenDaylight Developer Guide March 4, 2015 master

328

• Install Maven. (RHEL/Cent OS/Fedora)

1. Download Maven from the following page and install it folloiwng the instruction in
the page.

2. http://maven.apache.org/download.cgi

3. Install gtest-devel, json-c libraries

• RHEL/Fedora/Cent OS

 wget <nowiki>http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.
noarch.rpm</nowiki>
 rpm -Uvh epel-release-6-8.noarch.rpm
 yum install gtest-devel json-c json-c-devel

Note

For RHEL7 and CentOS7, the json-c is part of the default repo, Please install
json-c and json-c-devel from the default repo and gtest-devel alsone from the
EPEL repo (http://dl.fedoraproject.org/pub/epel/7/x86_64/)

• Ubuntu 13.10/Ubuntu 12.04

 apt-get install cmake libgtest-dev
 cp -R /usr/src/gtest gtest-work
 cd gtest-work
 cmake CMakeLists.txt
 make
 sudo cp *.a /usr/lib
 cd ..
 rm -rf gtest-work

Build

Note

User is not required to be mandatorily root, but the user must own the
directory /usr/local/vtn

• Example : .The directory should appear as below (assuming the user as "vtn"):

 # ls -l /usr/local/
 drwxr-xr-x. 12 vtn vtn 4096 Mar 14 21:53 vtn

• Download the code from git.

 git clone ssh://<username>@git.opendaylight.org:29418/vtn.git
 git clone https://git.opendaylight.org/gerrit/p/vtn.git

• Build and install VTN Coordinator.

 cd vtn/coordinator
 mvn -f dist/pom.xml install
 tar -C/ -jxvf dist/target/distribution.vtn-coordinator-6.1.0.0-SNAPSHOT-bin.
tar.bz2

http://maven.apache.org/download.cgi
http://dl.fedoraproject.org/pub/epel/7/x86_64/

OpenDaylight Developer Guide March 4, 2015 master

329

Run VTN Coordinator

Prior preparation

To change the port

1. By Default coordinator will listen on port 8083

2. To change the listening port modify the TOMCAT_PORT in below file

 /usr/local/vtn/tomcat/conf/tomcat-env.sh.

1. Set up the DB.

 /usr/local/vtn/sbin/db_setup

If any problem in setting up db, Please visit: * https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting#After_executing_db_setup.2C_you_have_encountered_the_error_.22Failed_to_setup_database.22.3F

Start
1. Start VTN Coordinator.

 /usr/local/vtn/bin/vtn_start

2. Execute the following commands while stopping.

 /usr/local/vtn/bin/vtn_stop

WebAPI
• VTN Coordinator version information will be displayed if following command is executed

when VTN has started successfully.

curl --user admin:adminpass -H 'content-type: application/json' -X GET \
'http://127.0.0.1:8083/vtn-webapi/api_version.json'

• The expected response message:

 {"api_version":{"version":"V1.2"}}

Hacking VTN Manager

Installing VTN Manager from source code
Prior preparation. VTN Manager is a set of OSGi bundles running in OpenDaylight
controller in Karaf platform, so prior preparation for installing VTN Manager is the same as
OpenDaylight controller.

Please see https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation.

Get VTN Source

The below procedure assumes, You are installing OpenDaylight Controller with VTN
Manager on your local Linux machine.

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting#After_executing_db_setup.2C_you_have_encountered_the_error_.22Failed_to_setup_database.22.3F
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting#After_executing_db_setup.2C_you_have_encountered_the_error_.22Failed_to_setup_database.22.3F
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation

OpenDaylight Developer Guide March 4, 2015 master

330

• Download the code from the Git repository of VTN Project.

 git clone ssh://<username>@git.opendaylight.org:29418/vtn.git
or
 git clone https://git.opendaylight.org/gerrit/p/vtn.git

The following instructions assume you put the code in directory ${vtn_dir}.

 ${VTN_DIR}=<Top of VTN source tree>

• Build the code of VTN Manager.

 cd ${VTN_DIR}/manager
 mvn clean install

NOTE: This command will build the local Karaf distribution in the folder
 manager/dist/karaf/target/assembly.

Build and Run the Controller with VTN Manager

Build

Note

You will need direct internet connection for this build to be successful.

cd ${VTN_DIR}/manager
mvn clean install -DskipTests

Note: SkipTests will not execute the Unit Tests and Integration Tests while compilation

Hacking VTN Manager(Helium)

Installing VTN Manager from source code

Prior preparation. VTN Manager is a set of OSGi bundles running in OpenDaylight
controller in Karaf platform, so prior preparation for installing VTN Manager is the same as
OpenDaylight controller.

Get VTN Source

The below procedure assumes, You are installing OpenDaylight Controller with VTN
Manager on your local Linux machine.

• Download the code from the Git repository of VTN Project.

 git clone ssh://<username>@git.opendaylight.org:29418/vtn.git
or
 git clone https://git.opendaylight.org/gerrit/p/vtn.git

The following instructions assume you put the code in directory ${vtn_dir}.

 ${VTN_DIR}=<Top of VTN source tree>

OpenDaylight Developer Guide March 4, 2015 master

331

• Build the code of VTN Manager.

 cd ${VTN_DIR}/manager
 mvn clean install

Note

This command will build the local Karaf distribution in the folder manager/dist/
karaf/target/assembly.

Build and Run the Controller with VTN Manager

Build karaf distribution

Build

You will need direct internet connection for this build to be successful.

 cd ${VTN_DIR/manager/dist-karaf for karaf binaries
 mvn clean install

Run:

• cd ${vtn_dir}/manager/dist-karaf/target/assembly

• ./bin/karaf Note: By default the VTN packages will be installed

Note

* After successful build, the directory ${vtn_dir}/manager/dist-karaf will have
assembly and tar and zip versions of binaries * User can either choose to run
from assembly or copy the tar or zip to required locations and execute there. *
Test if VTN Manger is running * In the karaf prompt, type the below command
to ensure that vtn packages are installed.

Build Non-Karaf distribution

Build.

cd ${VTN_DIR}/manager/dist to build the non-karaf binaries
mvn clean install
cd ${VTN_DIR}/manager/dist/target/distribution.vtn-manager-0.2.2-SNAPSHOT-
osgipackage/opendaylight

Run.

./run.sh of10 (If you want to enable only OpenFlow 1.0)

./run.sh of13 (If you want to enable all supported openflow versions)

Verify if VTN is running

• In the karaf prompt, type the below command to ensure that vtn packages are installed.
feature:list i | grep vtn

OpenDaylight Developer Guide March 4, 2015 master

332

REST API
VTN Manager provides REST API for virtual network functions.

For detailed information about REST API specifications, see https://wiki.opendaylight.org/
view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Manager:RestApi

Here is an example of how to create a virtual tenant network.

 curl --user "admin":"admin" -H "Accept: application/json" -H \
 "Content-type: application/json" -X POST \
 http://localhost:8080/controller/nb/v2/vtn/default/vtns/Tenant1 \
 -d '{"description": "My First Virtual Tenant Network"}'

You can check the list of all tenants by executing the following command.

 curl --user "admin":"admin" -H "Accept: application/json" -H \
 "Content-type: application/json" -X GET \
 http://localhost:8080/controller/nb/v2/vtn/default/vtns

Openstack Support Developer Guide
The implementation describes ODL controller with VTN manager feature provides the
network service for OpenStack. VTN manager utilizes the OVSDB southbound service
and the neutron for this implementation.The below diagram depicts the communication
of ODL Controller and two virtual network connected by a OpenFlow switch using this
implementation.

Figure 22.9. OpenStack Architecture

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Manager:RestApi
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Manager:RestApi

OpenDaylight Developer Guide March 4, 2015 master

333

Configuration

Please refer https://wiki.opendaylight.org/view/Release/Helium/VTN/User_Guide/
OpenStack_Support for the use and configuration.

OpenStack Configuration Details

Follow the below steps to configure devstack with ODL controller:

Control Node

• Disable nova network and enable neutron.

• Enable service odl-compute (Optionally you can enable odl-server also, which will
download and deploy ODL in the particular node).

• Set ODL_MGR_IP with IP Address of ODL.

• Make all network types as local, as there is no support for vlan in Helium.

• Add the ODL neutron URL for devstack to post requests.

Compute Node

• To configure Compute node follows the steps b,c and d of Control Node.

• Very few services are enabled like neutron,n-cpu and rabbit.

• The neutron URL is not needed to be set in compute node.

• The Controller node services are added as the service hosts for various services.

For more details: Please refer to https://wiki.openstack.org/wiki/NeutronDevstack

ODL Configuration Details

The implementation makes use of a configuration file vtn.ini in the OpenDaylight
configuration directory. The name of the bridge in Openstack OVS, the physical interface
device name to be used for VM’s are mentioned in this file. The vtn.ini is created with the
below parameters and the explanation for them is as follows

 bridgename=br-int
 portname=eth1
 protocols=OpenFlow13
 failmode=secure

• The values of the configuration parameters must be changed based on the user
environment. Especially, portname should be carefully configured.Because if the value is
wrong, OpenDaylight controller fails to forward packets. Other parameters works fine as
is for general use cases. .bridgename

• The name of the bridge in Open-v-Switch, that will be created by OpenDaylight
Controller.

https://wiki.opendaylight.org/view/Release/Helium/VTN/User_Guide/OpenStack_Support
https://wiki.opendaylight.org/view/Release/Helium/VTN/User_Guide/OpenStack_Support
https://wiki.openstack.org/wiki/NeutronDevstack

OpenDaylight Developer Guide March 4, 2015 master

334

• It must be "br-int". .portname

• The name of the port that will be created in the vbridge in Open vSwitch.

• This must be the same name of the interface of OpenStack Nodes which is used for
interconnecting OpenStack Nodes in data plane.(in our case:eth1)

• By default, if vtn.ini is not created, VTN uses ens33 as portname. .protocols

• OpenFlow protocol through which OpenFlow Switch and Controller communicate.

• The values can be OpenFlow13 or OpenFlow10. .failmode

• The value can be "standalone" or "secure".

• Please use "secure" for general use cases.

If the file is not found, the following default values are assumed

 bridgename=br-int
 portname=eth1
 protocols=OpenFlow13
 failmode=secure

Implementation details

VTN Manager:

It subscribes to the events from OVS and also implements the neutron requests received by
ODL Controller.

Functional Behavior

StartUp:

• The ML2 implementation for ODL Controller will ensure that when OVS is started, the
ODL_IP_ADDRESS configured will be set as manager.

• When ODL Controller receives the update of the OVS in the port:6640, (Manager port)
VTN Manager handles the event and adds a bridge with required port mappings to the
Open-V-Switch at openstack node.

• When neutron starts up, a New Network create is POSTED to ODL, for which VTN
Manager creates a VTN.

• Network and Sub-Network Create: Whenever a new sub network is created, VTN
Manager will handle the same and create a vbridge under the VTN.

• VM Creation in openstack: The interface mentioned as integration bridge in the
configuration file, will be added with more interfaces on creation of a new VM in
Openstack and network is provisioned for it by VTN neutron bundle.The addition of
new PORT is captured by VTN Manager and it creates a vbridge interface with port
mapping for the particular port.Now, when the VM starts to communicate with other

OpenDaylight Developer Guide March 4, 2015 master

335

VM’s created, VTN Manger will install flows in the OVS and other openflow switches to
facilitate communication between VM(s).

Note.

To use this feature, VTN feature should be installed

Reference
https://wiki.opendaylight.org/images/5/5c/
Integration_of_vtn_and_ovsdb_for_helium.pdf

OpenDaylight Developer Guide March 4, 2015 master

336

23. YANG Tools

Table of Contents
Prerequisites for YANG Tools Project ... 336
Pulling code using ssh .. 336
Pulling code using https .. 336
Building the code .. 337
Mapping YANG to Java ... 337
Additional Packages .. 338
Data Interface ... 340
Service Interface .. 340

YANG is a data modelling language used to model configuration and state data
manipulated by the Network Configuration Protocol(NETCONF), NETCONF remote
procedure calls, and NETCONF notifications. YANG is used to model the operations and
content layers of NETCONF.

Prerequisites for YANG Tools Project
• OpenDayLight account Get an account to push or edit code on the wiki. You can

however pull code anonymously.

• Gerrit Setup for code review To use shh follow instructions on Opendaylight wiki page at:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Gerrit_Setup To use https
follow instructions on Opendaylight wiki page at: https://wiki.opendaylight.org/view/
OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit

• Maven 3 to import Maven project from OpendayLight Git repository To clone the
controller follow instructions at: https://git.opendaylight.org/gerrit/p/controller.git To
clone the yangtools repositories follow instructions at: https://git.opendaylight.org/
gerrit/p/yangtools.git

Note

You need to setup Gerrit to access GIT using ssh.

Pulling code using ssh
To pull code using ssh use the following command:

git clone ssh://${ODL_USERNAME}@git.opendaylight.org:29418/yangtools.git;(cd
 yangtools; scp -p -P 29418 ${ODL_USERNAME}@git.opendaylight.org:hooks/commit-
msg .git/hooks/;chmod 755 .git/hooks/commit-msg;git config remote.origin.push
 HEAD:refs/for/master)

Pulling code using https
To pull code using https, use the following command:

https://identity.opendaylight.org/carbon/user-registration/index.jsp?region=region1&item=user_registration_menu
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Gerrit_Setup
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit
https://git.opendaylight.org/gerrit/p/controller.git
https://git.opendaylight.org/gerrit/p/yangtools.git
https://git.opendaylight.org/gerrit/p/yangtools.git

OpenDaylight Developer Guide March 4, 2015 master

337

git clone https://git.opendaylight.org/gerrit/p/yangtools.git;(cd yangtools;
 curl -o .git/hooks/commit-msg https://git.opendaylight.org/gerrit/tools/
hooks/commit-msg;chmod 755 .git/hooks/commit-msg;git config remote.origin.push
 HEAD:refs/for/master)

Building the code
To build the code, increase the memory available for Maven. The settings on the Jenkins
build server are:

export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=256m"

Important

The top level build line for yangtools project is: cd yangtools;mvn clean
install

Mapping YANG to Java
This chapter covers the details of mapping YANG to Java.

Name of the Package
To configure your project and generate source code from YANG, edit
your projects pom.xml and add Opendaylight SNAPSHOT repository for
snapshot releases. Currently, only snapshots are available. The name of the
package is org.opendaylight.yang.gen.v1.urn:2:case#module.rev201379
After replacing digits and JAVA keywords the package name is
org.opendaylight.yang.gen.v1.urn._2._case.module.rev201379

The package name consists of the following parts:

• Opendaylight prefix - Specifies the opendaylight prefix. Every package
name starts with the prefix org.opendaylight.yang.gen.v that is hardcoded in
BindingGeneratorUtil.moduleNamespaceToPackageName().

• YANG version - Specifies the YANG version. YANG version is updated through module
substatement yang-version.

• Namespace - Specifies the value of module subelement and the namespace argument
value. The namespace characters are : / : - @ $ # ' * + , ; = . character group:/ are replaced
with periods (.).

• Revision - Specifies the concatenation of word rev and value of module subelement
revision argument value without leading zeros before month and day. For example:
rev201379

After the package name is generated check it in if it contains any JAVA key words or digits.
If it is so then before the token add an underscore (_).

List of key words which are prefixed with underscore:

abstract, assert, boolean, break, byte, case, catch, char, class, const,
 continue, default, double, do, else, enum, extends, false, final, finally,

OpenDaylight Developer Guide March 4, 2015 master

338

 float, for, goto, if, implements, import, instanceof, int, interface,
 long, native, new, null, package, private, protected, public, return,
 short, static, strictfp, super, switch, synchronized, this, throw, throws,
 transient, true, try, void, volatile, while

As an example suppose following yang model:

module module {
 namespace "urn:2:case#module";
 prefix "sbd";
 organization "OPEN DAYLIGHT";
 contact "http://www.whatever.com/";
 revision 2013-07-09 {
 }
}

Additional Packages
In cases where the superior YANG elements contain specific subordinate YANG elements
additional packages are generated. Table below provides details of superior and
subordinate elements:

Superior Element Subordinate Element

list list, container, choice

container list, container, choice

choice leaf, list, leaf-list, container, case

case list, container, choice

rpc.output and rpc.input list, container, (choice isn’t supported)

notification list, container, (choice isn’t supported)

augment list, container, choice, case

Subordinate elements are not mapped only to JAVA Getter methods in the interface of
superior element but, they also generate packages with names consisting of superior
element package name and superior element name. In the example YANG model considers
the container element cont as the direct subelement of the module.

 container cont {
 container cont-inner {
 }
 list outter-list {
 list list-in-list {
 }
 }
 }

Container cont is the superior element for the subordinate elements cont-inner and outter-
list.

JAVA code is generated in the following structure:

• org.opendaylight.yang.gen.v1.urn.module.rev201379 - package contains element which
are subordinate of module

• Cont.java

OpenDaylight Developer Guide March 4, 2015 master

339

• org.opendaylight.yang.gen.v1.urn.module.rev201379.cont - package contains
subordinate elements of cont container element

• ContInner.java

• OutterList.java

 container cont {
 container cont-inner {
 }
 list outter-list {
 list list-in-list {
 }
 }
 }

list outter-list is superior element for subordinate element list-in-list

JAVA code is generated in the following structure:

• org.opendaylight.yang.gen.v1.urn.module.rev201379.cont.outter.list - package contains
subordinate elements of outter-list list element

• ListInList.java

Class and interface name

Some YANG elements are mapped to JAVA classes and interfaces. The name of
YANG element may contain various characters which aren’t permitted in JAVA
class names. Firstly whitespaces are trimmed from YANG name. Next characters
space, -, _ are deleted and subsequent letter is capitalized. At the end first letter is
capitalized. Transformation example: example-name without_capitalization is mapped to
ExampleNameWithoutCapitalization

Getters and setters name

In some cases are YANG elements generated as getter or setter methods. This methods are
created through class MethodSignatureBuilder The process for getter is:

• name of YANG element is converted to JAVA class name style

• the word get is added as preffix

• return type of the getter method is set to element’s type substatement value

The process for setter is:

• name of YANG element is converted to JAVA class name style

• word set is added as preffix

• input parameter name is set to element’s name converted to JAVA parameter style

• return parameter is set to void

OpenDaylight Developer Guide March 4, 2015 master

340

Module
YANG module is converted to JAVA as two JAVA classes. Each of the class is
in the separate JAVA file. The names of JAVA files are composed as follows:
<YANG_module_name><Sufix>.java where <sufix> can be data or service.

Data Interface
Data Interface has a mapping similar to container, but contains only top level nodes
defined in module.

Service Interface
Service Interface serves to describe RPC contract defined in the module. This RPC contract is
defined by rpc statements.

Typedef
YANG typedef statement is mapped to JAVA class. Typedef may contain following
substatement:

Substatement Argument Mapped to JAVA

type class attribute

descripton is not mapped

units is not mapped

default is not mapped

Valid Arguments Type
Simple values of type argument are mapped as follows:

Argument Type Mapped to JAVA

boolean Boolean

empty Boolean

int8 Byte

int16 Short

int32 Integer

int64 Long

string String or, class (if pattern substatement is specified)

decimal64 Double

uint8 Short

uint16 Integer

uint32 Long

uint64 BigInteger

binary byte[]

Complex values of type argument are mapped as follows:

Argument Type Mapped to JAVA

enumeration enum

OpenDaylight Developer Guide March 4, 2015 master

341

Argument Type Mapped to JAVA

bits class

leafref ??

identityref ??

union class

instance-identifier ??

Enumeration Substatement Enum
The YANG enumeration type has to contain some enum substatements. Enumeration
is mapped as JAVA enum type (standalone class) and every YANG enum subelement
is mapped to JAVA enum’s predefined values. Enum substatement can have following
substatements:

Enum’s Substatement Mapped to JAVA

description is not mapped

value mapped as input parameter for every predefined value of
enum

Example of maping of YANG enumeration to JAVA:

YANG JAVA

typedef typedef-enumeration {
 type enumeration {
 enum enum1 {
 description "enum1 description";
 value 18;
 }
 enum enum2 {
 value 16;
 }
 enum enum3 {
 }
 }
}

public enum TypedefEnumeration {
 Enum1(18),
 Enum2(16),
 Enum3(19);

 int value;

 private TypedefEnumeration(int value) {
 this.value = value;
 }
}

Bits’s Substatement Bit
The YANG bits type has to contain some bit substatements. YANG Bits is mapped to
JAVA class (standalone class) and every YANG bits subelement is mapped to class boolean
attributes. In addition are overriden Object methods hash, toString, equals.

YANG JAVA JAVA overriden Object methods

typedef typedef-bits {
 type bits {
 bit first-bit {
 description "first-bit
 description";
 position 15;
 }
 bit second-bit;
 }
}

public class TypedefBits {

 private Boolean firstBit;
 private Boolean secondBit;

 public TypedefBits() {
 super();
 }

 public Boolean getFirstBit()
 {
 return firstBit;
 }

 public void
 setFirstBit(Boolean firstBit) {
 this.firstBit =
 firstBit;
 }

 @Override
public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result +
 ((firstBit == null) ? 0 :
 firstBit.hashCode());
 result = prime * result +
 ((secondBit == null) ? 0 :
 secondBit.hashCode());
 return result;
}

@Override
public boolean equals(Object obj)
 {
 if (this == obj) {
 return true;
 }
 if (obj == null) {

OpenDaylight Developer Guide March 4, 2015 master

342

YANG JAVA JAVA overriden Object methods
 public Boolean
 getSecondBit() {
 return secondBit;
 }

 public void
 setSecondBit(Boolean secondBit)
 {
 this.secondBit =
 secondBit;
 }
}

 return false;
 }
 if (getClass() != obj.
getClass()) {
 return false;
 }
 TypedefBits other =
 (TypedefBits) obj;
 if (firstBit == null) {
 if (other.firstBit !=
 null) {
 return false;
 }
 } else if(!firstBit.
equals(other.firstBit)) {
 return false;
 }
 if (secondBit == null) {
 if (other.secondBit !=
 null) {
 return false;
 }
 } else if(!secondBit.
equals(other.secondBit)) {
 return false;
 }
 return true;
}

@Override
public String toString() {
 StringBuilder builder = new
 StringBuilder();
 builder.append("TypedefBits
 [firstBit=");
 builder.append(firstBit);
 builder.append(", secondBit=
");
 builder.append(secondBit);
 builder.append("]");
 return builder.toString();
}

Union’s Substatement Type

If type of typedef is union it has to contain type substatements. Union typedef is mapped
to class and its type subelements are mapped to private class attributes. For every YANG
union subtype si generated own JAVA constructor with a parameter which represent just
one attribute. Example to union mapping:

YANG JAVA JAVA overriden Object methods

typedef typedef-union {
 type union {
 type int32;
 type string;
 }
}

public class TypedefUnion {

 private Integer int32;
 private String string;

 public TypedefUnion(Integer
 int32) {
 super();
 this.int32 = int32;
 }

 public TypedefUnion(String
 string) {
 super();
 this.string = string;
 }

 public Integer getInt32() {
 return int32;

@Override
public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result +
 ((int32 == null) ? 0 : int32.
hashCode());
 result = prime * result +
 ((string == null) ? 0 : string.
hashCode());
 return result;
}

@Override
public boolean equals(Object obj)
 {
 if (this == obj) {
 return true;
 }
 if (obj == null) {
 return false;

OpenDaylight Developer Guide March 4, 2015 master

343

YANG JAVA JAVA overriden Object methods
 }

 public String getString() {
 return string;
 }
}

 }
 if (getClass() != obj.
getClass()) {
 return false;
 }
 TypedefUnion other =
 (TypedefUnion) obj;
 if (int32 == null) {
 if (other.int32 != null)
 {
 return false;
 }
 } else if(!int32.
equals(other.int32)) {
 return false;
 }
 if (string == null) {
 if (other.string != null)
 {
 return false;
 }
 } else if(!string.
equals(other.string)) {
 return false;
 }
 return true;
}

@Override
public String toString() {
 StringBuilder builder = new
 StringBuilder();
 builder.append("TypedefUnion
 [int32=");
 builder.append(int32);
 builder.append(", string=");
 builder.append(string);
 builder.append("]");
 return builder.toString();
}

String Mapping
YANG String can be detailed specified through type subelements length and pattern which
are mapped as follows:

Type subelement Mapping to JAVA

length not mapped

pattern . list of string constants = list of patterns . list of Pattern
objects . static initialization block where list of Patterns is
initialized from list of string of constants

Example of YANG string mapping

YANG JAVA JAVA Overriden Object Methods

typedef typedef-string {
 type string {
 length 44;
 pattern "[a][.]*"
 }
}

public class TypedefString {

 private static final
 List<Pattern> patterns = new
 ArrayList<Pattern>();
 public static final
 List<String> PATTERN_CONSTANTS
 = Arrays.asList("[a][.]*");

 static {
 for (String regEx :
 PATTERN_CONSTANTS) {
 patterns.
add(Pattern.compile(regEx));
 }
 }

@Override
public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result +
 ((typedefString == null) ? 0 :
 typedefString.hashCode());
 return result;
}

@Override
public boolean equals(Object obj)
 {
 if (this == obj) {
 return true;
 }

OpenDaylight Developer Guide March 4, 2015 master

344

YANG JAVA JAVA Overriden Object Methods

 private String
 typedefString;

 public TypedefString(String
 typedefString) {
 super();
 this.typedefString =
 typedefString;
 }

 public String
 getTypedefString() {
 return typedefString;
 }
}

 if (obj == null) {
 return false;
 }
 if (getClass() != obj.
getClass()) {
 return false;
 }
 TypedefString other =
 (TypedefString) obj;
 if (typedefString == null) {
 if (other.typedefString !
= null) {
 return false;
 }
 } else if(!typedefString.
equals(other.typedefString)) {
 return false;
 }
 return true;
}

@Override
public String toString() {
 StringBuilder builder = new
 StringBuilder();
 builder.append("TypedefString
 [typedefString=");
 builder.
append(typedefString);
 builder.append("]");
 return builder.toString();
}

Container
YANG Container is mapped to JAVA interface which extends interfaces DataObject,
Augmentable<container_interface>, where container_interface is name of mapped
interface. Example of mapping:

YANG JAVA

container cont {
}

public interface Cont extends DataObject,
 Augmentable<Cont> {
}

Leaf
Each leaf has to contain at least one type substatement. The leaf is mapped to getter
method of superior element with return type equal to type substatement value. Example of
mapping:

YANG JAVA

module module {

 namespace "urn:module";
 prefix "sbd";

 organization "OPEN DAYLIGHT";
 contact "http://www.whatever.com/";

 revision 2013-07-09 {

 }
 leaf lf {
 type string;
 }
}

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;
public interface ModuleData {
 String getLf();
}

Example of leaf mapping at container level:

OpenDaylight Developer Guide March 4, 2015 master

345

YANG JAVA

container cont {
 leaf lf {
 type string;
 }
}

public interface Cont extends DataObject,
 Augmentable<Cont> {
 String getLf();
}

Leaf-list
Each leaf-list has to contain one type substatement. The leaf-list is mapped to getter
method of superior element with return type equal to List of type substatement value.
Example of mapping of leaf-list.

YANG JAVA

container cont {
 leaf-list lf-lst {
 type typedef-union;
 }
}

public interface Cont extends DataObject,
 Augmentable<Cont> {
 List<TypedefUnion> getLfLst();
}

YANG typedef-union and JAVA TypedefUnion are the same as in union type.

List
YANG list element is mapped to JAVA interface. In superior element is generated as getter
method with return type List of generated interfaces. Mapping of list substatement to
JAVA:

Substatement Mapping to JAVA

Key Class

Example of list mapping outter-list is mapped to JAVA interface OutterList and in Cont
interface (superior of OutterList) contains getter method with return type List<OutterList>

YANG JAVA JAVA Overriden Object Methods

container cont {
 list outter-list {
 leaf leaf-in-list {
 type uint64;
 }
 leaf-list leaf-list-in-list
 {
 type string;
 }
 list list-in-list {
 leaf-list inner-leaf-list
 {
 type int16;
 }
 }
 }
}

ListInList.java

package org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont.outter.list;

import org.opendaylight.
yangtools.yang.binding.
DataObject;
import org.opendaylight.
yangtools.yang.binding.
Augmentable;
import java.util.List;

public interface ListInList
 extends DataObject,
 Augmentable<ListInList> {

 List<Short>
 getInnerLeafList();
}

OutterListKey.java

package org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont;

import org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont.OutterListKey;
import java.math.BigInteger;

OutterListKey.java

@Override
public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result +
 ((LeafInList == null) ? 0 :
 LeafInList.hashCode());
 return result;
}

@Override
public boolean equals(Object obj)
 {
 if (this == obj) {
 return true;
 }
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.
getClass()) {
 return false;
 }
 OutterListKey other =
 (OutterListKey) obj;
 if (LeafInList == null) {
 if (other.LeafInList !=
 null) {
 return false;
 }

OpenDaylight Developer Guide March 4, 2015 master

346

YANG JAVA JAVA Overriden Object Methods

public class OutterListKey {

 private BigInteger
 LeafInList;

 public
 OutterListKey(BigInteger
 LeafInList) {
 super();
 this.LeafInList =
 LeafInList;
 }

 public BigInteger
 getLeafInList() {
 return LeafInList;
 }
}

OutterList.java

package org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont;

import org.opendaylight.
yangtools.yang.binding.
DataObject;
import org.opendaylight.
yangtools.yang.binding.
Augmentable;
import java.util.List;
import org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont.outter.list.ListInList;

public interface OutterList
 extends DataObject,
 Augmentable<OutterList> {

 List<String>
 getLeafListInList();

 List<ListInList>
 getListInList();

 /*
 Returns Primary Key of Yang
 List Type
 */
 OutterListKey
 getOutterListKey();

}
Cont.java

package org.opendaylight.yang.
gen.v1.urn.module.rev201379;

import org.opendaylight.
yangtools.yang.binding.
DataObject;
import org.opendaylight.
yangtools.yang.binding.
Augmentable;
import java.util.List;
import org.opendaylight.yang.
gen.v1.urn.module.rev201379.
cont.OutterList;

public interface Cont extends
 DataObject, Augmentable<Cont> {

 List<OutterList>
 getOutterList();

 } else if(!LeafInList.
equals(other.LeafInList)) {
 return false;
 }
 return true;
}

@Override
public String toString() {
 StringBuilder builder = new
 StringBuilder();
 builder.append("OutterListKey
 [LeafInList=");
 builder.append(LeafInList);
 builder.append("]");
 return builder.toString();
}

OpenDaylight Developer Guide March 4, 2015 master

347

YANG JAVA JAVA Overriden Object Methods

}

Choice and Case

Choice element is mapped similarly as list element. Choice element is mapped to
interface (marker interface) and in the superior element is created using getter method
with the return type List of this marker interfaces. Case substatements are mapped
to the JAVA interfaces which extend mentioned marker interface. Example of choice
mapping:

YANG JAVA

container cont {
 choice choice-test {
 case case1 {
 }
 case case2 {
 }
 }
}

Case1.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379.cont.choice.test;

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentable;
import org.opendaylight.yang.gen.v1.urn.module.
rev201379.cont.ChoiceTest;

public interface Case1 extends DataObject,
 Augmentable<Case1>, ChoiceTest {
}

Case2.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379.cont.choice.test;

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentable;
import org.opendaylight.yang.gen.v1.urn.module.
rev201379.cont.ChoiceTest;

public interface Case2 extends DataObject,
 Augmentable<Case2>, ChoiceTest {
}

ChoiceTest.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379.cont;

import org.opendaylight.yangtools.yang.binding.
DataObject;

public interface ChoiceTest extends DataObject {
}

Grouping and Uses

Grouping is mapped to JAVA interface. Uses used in some element (using of concrete
grouping) are mapped as extension of interface for this element with the interface which
represents grouping. Example of grouping and uses mapping.

YANG JAVA

grouping grp {

}

Cont.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

OpenDaylight Developer Guide March 4, 2015 master

348

YANG JAVA
container cont {
 uses grp;
}

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentable;

public interface Cont extends DataObject,
 Augmentable<Cont>, Grp {
}

Grp.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

import org.opendaylight.yangtools.yang.binding.
DataObject;

public interface Grp extends DataObject {
}

Rpc
Rpc is mapped to JAVA as method of class ModuleService.java. Rpc’s substatement
are mapped as follows:

Rpc Substatement Mapping to JAVA

input interface

output interface

Example of rpc mapping:

YANG JAVA

rpc rpc-test1 {
 output {
 leaf lf-output {
 type string;
 }
 }
 input {
 leaf lf-input {
 type string;
 }
 }
}

ModuleService.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

import java.util.concurrent.Future;
import org.opendaylight.yangtools.yang.common.
RpcResult;

public interface ModuleService {

 Future<RpcResult<RpcTest1Output>>
 rpcTest1(RpcTest1Input input);

}

RpcTest1Input.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

public interface RpcTest1Input {

 String getLfInput();

}

RpcTest1Output.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

public interface RpcTest1Output {

 String getLfOutput();

}

OpenDaylight Developer Guide March 4, 2015 master

349

Notification

Notification is mapped to the JAVA interface which extends Notification interface.
Example of notification mapping:

YANG JAVA

notification notif {
 }

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentable;
import org.opendaylight.yangtools.yang.binding.
Notification;

public interface Notif extends DataObject,
 Augmentable<Notif>, Notification {
}

Augment

Augment is mapped to the JAVA interface. The interface starts with the same name as the
name of augmented interface. The suffix is order number of augmenting interface. The
augmenting interface also extends Augmentation<> with actual type parameter equal
to augmented interface. Example of augment mapping. In this example is augmented
interface Cont so whole parametrized type is Augmentation<Cont>.

YANG JAVA

container cont {
}

augment "/cont" {
}

Cont.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentable;

public interface Cont extends DataObject,
 Augmentable<Cont> {

}

Cont1.java

package org.opendaylight.yang.gen.v1.urn.module.
rev201379;

import org.opendaylight.yangtools.yang.binding.
DataObject;
import org.opendaylight.yangtools.yang.binding.
Augmentation;

public interface Cont1 extends DataObject,
 Augmentation<Cont> {

}

Identity

The purpose of the identity statement is to define a new globally unique, abstract, and
untyped identity. YANG substatement base considers an argument a string; the name of
existing identity from which the new identity is derived. Hence, the identity statement

OpenDaylight Developer Guide March 4, 2015 master

350

is mapped to JAVA abstract class and base substatement is mapped as extends JAVA
keyword. The identity name is translated to class name.

YANG JAVA

identity toast-type {
}

public abstract class ToastType extends
 BaseIdentity {
 protected ToastType() {
 super();
 }
}

identity white-bread {
 base toast-type;
}

WhiteBread.java

public abstract class WhiteBread extends ToastType
 {
 protected WhiteBread() {
 super();
 }
}

	OpenDaylight Developer Guide
	Table of Contents
	Part I. Overview
	1. Getting started with Git and Gerrit
	Overview of Git and Gerrit
	Setting up a Gerrit account
	Generating SSH keys for your system
	Registering your SSH key with Gerrit

	2. Pulling and Pushing the Code from the CLI
	Pulling code via Git CLI
	Setting up Gerrit Change-id Commit Message Hook
	Building the code
	Runing OpenDaylight from local build
	Commit the code using Git CLI
	Pulling the Code changes via Git CLI
	Pushing the Code via Git CLI
	Viewing your Changes in Gerrit
	Troubleshooting

	Part II. Project-Specific Development Guides
	3. Authentication Service
	Authenthentication data model
	Terms and definitions in the model
	Authentication methods
	Example with token authentication using curl (username/password = admin/admin, domain = sdn):

	How the ODL Authentication Service works
	Configuring Authentication service
	Configuring tokens
	Configuring AAA federation

	How federated authentication is set up
	Mapping users to roles and domains
	Operational model
	Operational Model: Sample code
	Mapping Users
	Example: Splitting a fully qualified username into user and realm components

	Actors in ODL Authentication Service
	Sub-components of ODL Authentication Service
	ODL Authorization Service

	4. BGP LS PCEP
	BGPCEP Overview
	Implementing an Extension to PCEP
	Update Configuration
	Writing an Extension to BGP

	Implementing an Extension to BGP
	Updating Configuration
	Programmatic Interface(s)
	Vendor Specific Constraints in PCEP

	Vendor Information TLV
	Vendor Information Object

	5. Controller
	OpenDaylight Controller: MD-SAL Developers' Guide
	API types
	Basic YANG concepts and their rendition in APIs
	RPC
	Global service
	Routed service
	Notification
	Instance Identifier

	MD-SAL: Plugin types
	Southbound protocol plugin
	Manager-type application

	Protocol library
	MD-SAL: Southbound plugin development guide
	Definition of YANG models
	RPCs
	Augmentations
	Best practices
	Implementation
	Notifications
	Best practices
	OpenDaylight Controller: MD-SAL FAQs
	OpenDaylight Controller Configuration: Java Code Generator
	YANG to Java code generator

	Service interfaces generating
	Module stubs generating

	Runtime beans generating
	RPCs

	OpenDaylight Controller MD-SAL: Restconf
	Restconf operations overview

	Mount point
	HTTP methods
	OPTIONS /restconf
	GET /restconf/config/<identifier>
	GET /restconf/operational/<identifier>
	PUT /restconf/config/<identifier>
	POST /restconf/config
	POST /restconf/config/<identifier>
	POST /restconf/operations/<moduleName>:<rpcName>
	DELETE /restconf/config/<identifier>

	How Restconf works
	GET in action
	PUT in action

	Something practical
	OpenDaylight Controller: Configuration
	Validation
	Dependency resolver

	APIs and SPIs
	SPIs
	APIs
	Runtime APIs
	JMX APIs
	Use case scenarios
	Default module instances

	OpenDaylight Controller configuration: Initial
	Initial configuration for controller
	Using the config.ini property file
	Using configuration persister

	OpenDaylight Controller configuration: config.ini
	OpenDaylight Controller: Configuration Persister
	Using configuration persister

	Current configuration for controller distribution
	Adding custom initial configuration
	Custom initial configuration in bgpcep distribution
	Configuration Persister
	Persister implementation

	Persister Notification Handler
	Storage Adapter implementations
	Persisted snapshot format

	MD-SAL architecture: Clustering Notifications
	Proposed change

	MD-SAL Architecture: DOM
	MD-SAL DOM Data Broker

	MD-SAL: Infinispan Data Store
	Components of Infinispan Data Store
	Encoding or Decoding a Normalized Node into and from the Inifinispan TreeCache
	Managing Transactions
	Managing DataChange notifications
	Building the POC
	To get yangtools
	To get the Controller
	To get the OpenFlowplugin
	Running the POC

	State of the POC
	Infinispan-related learnings
	Datastore-related learnings
	No clarity on the closing of Read-Only transactions
	Write and Delete methods in a read-write transaction do not return a Future
	Expense of creating a DataChange event
	Complications of reconstructing a Normalized Node from different data-structures
	Comparison of In-Memory and Infinispan Datastore
	Running cbench
	The results for In-Memory Datastore
	Infinispan Datastore

	OpenDaylight Controller configuration: FAQs
	Generic questions about the configuration subsystem

	OpenDaylight Controller configuration: Component map
	OpenDaylight Controller: Netconf component map
	OpenDaylight Controller Configuration: Examples sample project
	Describing the module configuration using yang
	Updating the maven configuration in pom.xml
	Generated java files
	Generated config source files examples
	Modifying generated sources
	Notes:
	Adding support for default instances

	OpenDaylight Controller:Configuration examples user guide
	Configuring thread pools with yangcli-pro
	Connecting to plaintext TCP socket and ssh
	Configuring threadfactory

	Configuring fixed threadpool
	Logback configuration - Yuma
	Modifying existing console appender in logback

	Invoking RPCs

	OpenDaylight Controller Configuration: Logback Examples
	Logback Configuration Example
	Java code generation
	Logback configuration: Jolokia
	Logback configuration: Netconf
	Logback configuration - Yuma

	Opendaylight Controller: Configuration Logback.xml
	Configuration example of thread pools using yangcli-pro
	Configuration example of thread pools using telnet
	Connecting to plaintext TCP socket
	Configuring threadfactory
	Configuring fixed threadpool
	OpenDaylight Controller MD-SAL: Model reference

	6. Defense4all
	Defense4All Design
	Defense4All in an ODL Environment
	Framework View
	Application View
	ODL Reps View
	Basic Control Flow
	Configurations and Setup Flow
	Attack Detection Flow
	Attack Mitigation Flow
	Continuity

	7. DLUX
	Setup and Run
	Required Technology Stack
	Install NodeJS
	For Windows and Mac without brew:
	For Mac with brew installed:
	Verify NodeJS is installed:

	Install required Node libraries
	Get latest DLUX code from git
	Build the DLUX code
	Build DLUX Karaf feature and distribution
	Enable DLUX Karaf Feature
	Run standalone DLUX against the controller

	DLUX Modules
	Module Structure
	Create New Module
	Define the module
	Set the register function
	Set the route
	Adding element to the navigation menu
	Link the controller file

	Create the Controllers, factory, directive, etc
	Append to the main file

	Yang Utils

	8. Group-Based Policy
	Group-Based Policy Architecture Overview
	Policy Model
	Policy Model UML Diagrams
	Policy Concepts
	Introduction to Policy Resolution
	Contract Selection
	Subject Selection
	Requirements and Capabilities
	Conditions
	Clauses

	Rule Application

	Matchers
	Quality Matchers
	Requirement and Capability Matchers
	Condition Matcher

	Tenants
	Contract References
	Common Tenant

	Subject Features
	Forwarding Model
	Inheritance
	Endpoint Groups
	Selectors

	Contracts
	Targets
	Subjects
	Clauses

	Matchers
	Subject Feature Definitions

	State Repositories
	Querying and Subscription
	Endpoint Repository
	Policy Repository
	Status Repository

	Renderers
	Renderer Common Framework
	InheritanceUtils
	PolicyResolverService

	Open vSwitch-Based Overlay Renderers
	Network Architecture
	Network Topology
	Control Network
	Overlay Network
	Delivering Packets

	Packet Processing Pipeline
	Register Usage
	Table/Pipeline Names and Order
	Port Security
	Source EPG & L2/L3 Domain Selection
	Broadcasting / Multicasting
	Special Packet Types
	Destination EPG Selection (L2)
	Destination EPG Selection (L3)
	Policy Enforcement
	Policy Actions & Packet Rewrite

	OpenFlow/OVS Renderer
	OpFlex Renderer

	9. L2Switch
	Checking out the L2Switch project
	Testing your changes to the L2Switch project
	Running the L2Switch project
	Create a network using mininet
	Generating network traffic using mininet
	Miscellaneous mininet commands

	Architecture of the L2Switch project
	Developer’s Guide for Packet Dispatcher
	Classes
	Further development

	Developer’s Guide for Loop Remover
	Classes
	Configuration
	Further development
	Validating changes to Loop Remover

	Developer’s Guide for Arp Handler
	Classes
	Configuration
	Further development

	Developer’s Guide for Address Tracker
	Classes
	Configuration
	Further development
	Validating changes to Address Tracker

	Developer’s Guide for Host Tracker
	Validationg changes to Host Tracker

	Developer’s Guide for L2Switch Main
	Classes
	Configuration
	Further development

	10. Lisp Flow Mapping
	OpenDaylight Locator/ID Separation Protocol (LISP) Flow Mapping Overview
	LISP Flow Mapping Service
	LISP Service Architecture
	LISP APIs
	LISP Configuration Options
	Developer Tutorial
	LISP Support
	Installing LISP Flow Mapping
	Setting up Gerritt
	Pulling code via Git CLI
	Setting up Gerrit Change-id Commit Message Hook
	Hacking the Code
	Commit the code using Git CLI
	Pushing the Code via Git CLI
	Pulling the Code changes via Git CLI
	Pushing the Code via Git CLI
	Viewing your Changes in Gerrit
	Troubleshooting

	11. ODL-SDNi
	12. OpenFlow Protocol Library
	13. OpenFlow Plugin
	OpenFlow Plugin: Sequence diagrams
	OpenFlow Plugin:Config subsystem
	Model provided modules by yang
	Generating config and sal classes from yangs
	Altering generated files
	Configuration xml file
	API changes
	Providing config file (IT, local distribution/base, integration/distributions/base)

	Message Spy in OF Plugin
	Message statistics collection
	Message statistics display

	OpenFlow Plugin:Mininet
	Mininet on debian wheezy(7), x86_64
	Requirements

	Test the Python environment

	Installation
	Openvswitch 2.0.0
	Mininet 2.1.0

	Usage
	Coding tips for OpenFlow Plugin
	OpenFlow Plugin: Wiring up notifications
	Introduction
	To create and register a Translator
	Creating a Translator Class
	Registeing the Translator Class
	Registering your MD-SAL message for notification to the MD-SAL

	OpenFlow Plugin:Python test scripts
	Prerequisites for Python test-scripts
	Installing python tools
	Installing Wireshark
	Adding openflow13 dissector to wireshark
	Controller
	Tests

	General
	ODL Test (odl_crud_tests.py)
	Test life cycle

	Parameters
	Stress Test (stress_test.py)
	Operational Data Test (oper_data_test.py)
	Switch restart (sw_restart_test.py)
	OpenFlow Plugin: Robot framework tests
	Prerequisites for robot tests
	Installation
	VM with Mininet

	TLS support for OF Plugin
	Configuring the ODL OpenFlow plugin
	Configuring openvswitch SSL
	Configuring a hardware switch with TLS
	Commands for debugging

	Open Flow Plugin: Support for extensibility
	Converters (semantic level)
	Approaches to action conversion
	Encoders and decoders for augment messages (low level)
	Master decoder

	Overload protection in the OF Plugin
	Effects of overload protection

	14. OVSDB Integration
	OpenDaylight OVSDB integration
	Getting the code
	OpenDaylight Mechanism Driver for Openstack Neutron ML2
	Importing the code in to Eclipse or IntelliJ
	Browsing the code
	Source code organization

	Building and running OVSDB
	Building a Karaf feature and deploying it in an Opendaylight Karaf distribution
	Downloading OVSDB’s Karaf distribution
	Running Karaf feature from OVSDB’s Karaf distribution
	Sample output from the Karaf console

	Testing patches
	Neutron integration
	Open vSwitch
	Mininet
	Vagrant

	OVSDB integration design
	Resources

	OpenDaylight OVSDB southbound plugin architecture and design
	Overview of OpenDaylight Controller architecture

	OVSDB southbound plugin
	Connection service
	Network Configuration Service
	Bidirectional JSON-RPC library
	OVSDB Schema definitions and Object mappers
	Overlay tunnel management
	OVSDB to OpenFlow plugin mapping service
	Inventory service

	OpenDaylight OVSDB Developer Getting Started Video Series
	Other developer tutorials

	OVSDB integration: New features
	Schema independent library
	Northbound API v3
	Port security
	OpenStack workflow
	Examples: Rules supported
	Security group rules supported in ODL
	Limitations

	L3 forwarding
	Starting OVSDB and OpenStack
	OpenStack workflow
	Limitations

	LBaaS
	Creating an OpenStack workflow
	Implementation

	Open vSwitch rules
	OVSDB project code
	Limitations

	15. Packet Cable MultiMedia (PCMM)
	Checking out the Packetcable PCMM project
	System Overview
	Dependency Map
	Packetcable Components
	Download and Install
	Download
	Unzip
	Run Karaf

	Preparing to Work with the Packetcable PCMM Service
	Minimum install procedure
	Useful Features to Start with PCMM
	Auto Starting a Series of Bundles using Karaf
	Starting Karaf as System Service
	Accessing the Karaf Console
	Add These Directives to Your Operating System Profile to Change the Karaf Startup Parameters for Troubleshooting
	Tell a Bundle to Log Debug

	Management UI

	Explore and exercise the PacketCable REST API
	RESTCONF API Explorer
	Postman
	Custom Testsuite
	restconfapi.py
	flow_config_perf_pcmm.py

	Using Wireshark to Trace PCMM
	Debugging and Verifying DQoS Gate (Flows) on the CMTS
	Cisco

	Find the Cable Modem
	Show PCMM Plugin Connection
	Show COPS Messages
	Use CM Mac Address to List Service Flows
	Deleting a PCMM Gate Message from the CMTS
	Find service flows
	Debug and display PCMM Gate messages
	Debug COPS messages

	Arris
	RESTCONF API for Packetcable PCMM
	CMTS
	Read
	Create
	Delete

	Flows
	Read
	Create
	Delete

	Specifications and References

	16. Plugin for OpenContrail
	17. Service Function Chaining
	18. SNBI Developers' Guide
	Defining characteristics of SNBI bootstrapping
	SNBI components
	Forwarding element components
	Portable Foundation

	How SNBI works
	Bootstrapping a device using SNBI
	Controller and FE communications
	Benefits of SNBI discovery
	SNBI: Non-ODL technologies used
	SNBI terms and definitions

	19. SNMP4SDN
	20. TCP-MD5
	21. Table Type Patterns
	Introduction
	Support in Helium

	Using The REST APIs
	Setting REST HTTP Headers
	Authentication
	Content-Type and Accept

	Content
	Making a REST Call

	Limitations
	Differences between OpenDaylight TTP and ONF TTP
	Strictly Informational
	Known issues

	22. VTN
	Virtual Tenant Network (VTN)
	OpenDaylight Virtual Tenant Network (VTN) Overview
	VTN Coordinator
	Communication Framework

	VTN Manager
	Function Outline

	OpenDaylight Virtual Tenant Network (VTN) API Overview
	Web Server
	VTN Service Java API Library

	VTN Transaction Coordinator (TC) Overview
	Transaction Coordinator (TC)
	Transaction Coordinator Library

	VTN OpenDaylight Controller Driver (ODC Driver) Overview
	Common Driver Framework (CDF)
	ODC Driver

	VTN Unified Provider Logical Layer (UPLL)
	UPLL Functionalities
	DAL Functionalities

	VTN Unified Provider Physical Layer (UPPL)
	UPPL Functionalities

	Usage Examples

	Hacking VTN Coordinator
	Prior preparation
	Build
	Run VTN Coordinator
	Prior preparation
	To change the port

	Start
	WebAPI

	Hacking VTN Manager
	Installing VTN Manager from source code
	Get VTN Source

	Build and Run the Controller with VTN Manager
	Build

	Hacking VTN Manager(Helium)
	Installing VTN Manager from source code
	Get VTN Source
	Build and Run the Controller with VTN Manager
	Build karaf distribution
	Build Non-Karaf distribution

	Verify if VTN is running
	REST API

	Openstack Support Developer Guide
	Configuration
	OpenStack Configuration Details
	ODL Configuration Details

	Implementation details
	VTN Manager:
	Functional Behavior

	Reference

	23. YANG Tools
	Prerequisites for YANG Tools Project
	Pulling code using ssh
	Pulling code using https
	Building the code
	Mapping YANG to Java
	Name of the Package

	Additional Packages
	Class and interface name
	Getters and setters name
	Module

	Data Interface
	Service Interface
	Typedef
	Valid Arguments Type
	Enumeration Substatement Enum
	Bits’s Substatement Bit
	Union’s Substatement Type
	String Mapping
	Container
	Leaf
	Leaf-list
	List
	Choice and Case
	Grouping and Uses
	Rpc
	Notification
	Augment
	Identity

