/* * Copyright (c) 2014 Cisco Systems, Inc. and others. All rights reserved. * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 which accompanies this distribution, * and is available at http://www.eclipse.org/legal/epl-v10.html */ package org.opendaylight.yangtools.yang.data.impl.schema.tree; import com.google.common.base.Optional; import com.google.common.base.Preconditions; import com.google.common.base.Predicate; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; import javax.annotation.Nonnull; import javax.annotation.concurrent.NotThreadSafe; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier.PathArgument; import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode; import org.opendaylight.yangtools.yang.data.api.schema.tree.ModificationType; import org.opendaylight.yangtools.yang.data.api.schema.tree.StoreTreeNode; import org.opendaylight.yangtools.yang.data.api.schema.tree.spi.TreeNode; /** * Node Modification Node and Tree * * Tree which structurally resembles data tree and captures client modifications * to the data store tree. * * This tree is lazily created and populated via {@link #modifyChild(PathArgument)} * and {@link TreeNode} which represents original state as tracked by {@link #getOriginal()}. */ @NotThreadSafe final class ModifiedNode extends NodeModification implements StoreTreeNode { static final Predicate IS_TERMINAL_PREDICATE = new Predicate() { @Override public boolean apply(final @Nonnull ModifiedNode input) { Preconditions.checkNotNull(input); switch (input.getType()) { case DELETE: case MERGE: case WRITE: return true; case SUBTREE_MODIFIED: case UNMODIFIED: return false; } throw new IllegalArgumentException(String.format("Unhandled modification type %s", input.getType())); } }; private final Map children; private final Optional original; private final PathArgument identifier; private ModificationType modificationType = ModificationType.UNMODIFIED; private Optional snapshotCache; private NormalizedNode value; private ModifiedNode(final PathArgument identifier, final Optional original, final boolean isOrdered) { this.identifier = identifier; this.original = original; if (isOrdered) { children = new LinkedHashMap<>(); } else { children = new HashMap<>(); } } /** * Return the value which was written to this node. * * @return Currently-written value */ public NormalizedNode getWrittenValue() { return value; } @Override public PathArgument getIdentifier() { return identifier; } /** * * Returns original store metadata * @return original store metadata */ @Override Optional getOriginal() { return original; } /** * Returns modification type * * @return modification type */ @Override ModificationType getType() { return modificationType; } /** * * Returns child modification if child was modified * * @return Child modification if direct child or it's subtree * was modified. * */ @Override public Optional getChild(final PathArgument child) { return Optional. fromNullable(children.get(child)); } /** * * Returns child modification if child was modified, creates {@link ModifiedNode} * for child otherwise. * * If this node's {@link ModificationType} is {@link ModificationType#UNMODIFIED} * changes modification type to {@link ModificationType#SUBTREE_MODIFIED} * * @param child * @return {@link ModifiedNode} for specified child, with {@link #getOriginal()} * containing child metadata if child was present in original data. */ ModifiedNode modifyChild(final PathArgument child, final boolean isOrdered) { clearSnapshot(); if (modificationType == ModificationType.UNMODIFIED) { updateModificationType(ModificationType.SUBTREE_MODIFIED); } final ModifiedNode potential = children.get(child); if (potential != null) { return potential; } final Optional currentMetadata; if (original.isPresent()) { final TreeNode orig = original.get(); currentMetadata = orig.getChild(child); } else { currentMetadata = Optional.absent(); } final ModifiedNode newlyCreated = new ModifiedNode(child, currentMetadata, isOrdered); children.put(child, newlyCreated); return newlyCreated; } /** * Returns all recorded direct child modification * * @return all recorded direct child modifications */ @Override Iterable getChildren() { return children.values(); } /** * Records a delete for associated node. */ void delete() { final ModificationType newType; switch (modificationType) { case DELETE: case UNMODIFIED: // We need to record this delete. newType = ModificationType.DELETE; break; case MERGE: case SUBTREE_MODIFIED: case WRITE: /* * We are canceling a previous modification. This is a bit tricky, * as the original write may have just introduced the data, or it * may have modified it. * * As documented in BUG-2470, a delete of data introduced in this * transaction needs to be turned into a no-op. */ newType = original.isPresent() ? ModificationType.DELETE : ModificationType.UNMODIFIED; break; default: throw new IllegalStateException("Unhandled deletion of node with " + modificationType); } clearSnapshot(); children.clear(); this.value = null; updateModificationType(newType); } /** * Records a write for associated node. * * @param value */ void write(final NormalizedNode value) { clearSnapshot(); updateModificationType(ModificationType.WRITE); children.clear(); this.value = value; } void merge(final NormalizedNode value) { clearSnapshot(); updateModificationType(ModificationType.MERGE); /* * Blind overwrite of any previous data is okay, no matter whether the node * is simple or complex type. * * If this is a simple or complex type with unkeyed children, this merge will * be turned into a write operation, overwriting whatever was there before. * * If this is a container with keyed children, there are two possibilities: * - if it existed before, this value will never be consulted and the children * will get explicitly merged onto the original data. * - if it did not exist before, this value will be used as a seed write and * children will be merged into it. * In either case we rely on OperationWithModification to manipulate the children * before calling this method, so unlike a write we do not want to clear them. */ this.value = value; } /** * Seal the modification node and prune any children which has not been * modified. */ void seal() { clearSnapshot(); // Walk all child nodes and remove any children which have not // been modified. final Iterator it = children.values().iterator(); while (it.hasNext()) { final ModifiedNode child = it.next(); child.seal(); if (child.modificationType == ModificationType.UNMODIFIED) { it.remove(); } } // A SUBTREE_MODIFIED node without any children is a no-op if (modificationType == ModificationType.SUBTREE_MODIFIED && children.isEmpty()) { updateModificationType(ModificationType.UNMODIFIED); } } private void clearSnapshot() { snapshotCache = null; } Optional getSnapshot() { return snapshotCache; } Optional setSnapshot(final Optional snapshot) { snapshotCache = Preconditions.checkNotNull(snapshot); return snapshot; } private void updateModificationType(final ModificationType type) { modificationType = type; clearSnapshot(); } @Override public String toString() { return "NodeModification [identifier=" + identifier + ", modificationType=" + modificationType + ", childModification=" + children + "]"; } /** * Create a node which will reflect the state of this node, except it will behave as newly-written * value. This is useful only for merge validation. * * @param value Value associated with the node * @return An isolated node. This node should never reach a datatree. */ ModifiedNode asNewlyWritten(final NormalizedNode value) { final ModifiedNode ret = new ModifiedNode(getIdentifier(), Optional.absent(), false); ret.write(value); return ret; } public static ModifiedNode createUnmodified(final TreeNode metadataTree, final boolean isOrdered) { return new ModifiedNode(metadataTree.getIdentifier(), Optional.of(metadataTree), isOrdered); } }