Add Groupbasedpolicy carbon review/notes
[docs.git] / docs / user-guide / service-function-chaining.rst
index 7a8af797dee7eb4ecaa318da812ca81802cdece9..abe6ba73a7f1731d859c8814c7751e2c7d6a2d12 100644 (file)
@@ -1,3 +1,5 @@
+.. _sfc-user-guide:
+
 Service Function Chaining
 =========================
 
@@ -409,6 +411,8 @@ RSP. Refer to the following diagram for more details.
 
    SFC OpenFlow Renderer High Level Architecture
 
+.. _sfc-user-guide-sfc-of-pipeline:
+
 SFC OpenFlow Switch Flow pipeline
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
@@ -533,7 +537,7 @@ Next Hop Table detailed
 The Next Hop table uses the RSP Path Id and appropriate packet fields to
 determine where to send the packet next. For NSH, only the NSP (Network
 Services Path, RSP ID) and NSI (Network Services Index, next hop) fields
-from the NSH header are needed to determine the VxLAN tunnel destination
+from the NSH header are needed to determine the VXLAN tunnel destination
 IP. For VLAN or MPLS, then the source MAC address is used to determine
 the destination MAC address.
 
@@ -664,6 +668,10 @@ To use this example, SFF OpenFlow switches must be created and connected
 as illustrated above. Additionally, the SFs must be created and
 connected.
 
+Note that RSP symmetry depends on Service Function Path symmetric field, if present.
+If not, the RSP will be symmetric if any of the SFs involved in the chain
+has the bidirectional field set to true.
+
 Target Environment
 ^^^^^^^^^^^^^^^^^^
 
@@ -743,7 +751,6 @@ command:
          {
            "name": "sf1",
            "type": "http-header-enrichment",
-           "nsh-aware": true,
            "ip-mgmt-address": "10.0.0.2",
            "sf-data-plane-locator": [
              {
@@ -758,7 +765,6 @@ command:
          {
            "name": "sf2",
            "type": "firewall",
-           "nsh-aware": true,
            "ip-mgmt-address": "10.0.0.3",
            "sf-data-plane-locator": [
              {
@@ -862,7 +868,6 @@ command:
        "service-function-chain": [
          {
            "name": "sfc-chain1",
-           "symmetric": true,
            "sfc-service-function": [
              {
                "name": "hdr-enrich-abstract1",
@@ -917,8 +922,7 @@ command:
     {
      "input": {
          "name": "sfc-path1",
-         "parent-service-function-path": "sfc-path1",
-         "symmetric": true
+         "parent-service-function-path": "sfc-path1"
      }
     }
 
@@ -965,7 +969,6 @@ command:
          {
            "name": "sf1",
            "type": "http-header-enrichment",
-           "nsh-aware": false,
            "ip-mgmt-address": "10.0.0.2",
            "sf-data-plane-locator": [
              {
@@ -980,7 +983,6 @@ command:
          {
            "name": "sf2",
            "type": "firewall",
-           "nsh-aware": false,
            "ip-mgmt-address": "10.0.0.3",
            "sf-data-plane-locator": [
              {
@@ -1150,7 +1152,6 @@ command:
        "service-function-chain": [
          {
            "name": "sfc-chain1",
-           "symmetric": true,
            "sfc-service-function": [
              {
                "name": "hdr-enrich-abstract1",
@@ -1205,8 +1206,7 @@ command:
     {
      "input": {
          "name": "sfc-path1",
-         "parent-service-function-path": "sfc-path1",
-         "symmetric": true
+         "parent-service-function-path": "sfc-path1"
      }
     }
 
@@ -1435,8 +1435,7 @@ approach is used for Service Functions.
                 {
                     "name": "Firewall",
                     "ip-mgmt-address": "172.25.73.23",
-                    "type": "service-function-type: firewall",
-                    "nsh-aware": true,
+                    "type": "firewall",
                     "sf-data-plane-locator": [
                         {
                             "name": "firewall-dpl",
@@ -1450,8 +1449,7 @@ approach is used for Service Functions.
                 {
                     "name": "Dpi",
                     "ip-mgmt-address": "172.25.73.23",
-                    "type":"service-function-type: dpi",
-                    "nsh-aware": true,
+                    "type":"dpi",
                     "sf-data-plane-locator": [
                         {
                             "name": "dpi-dpl",
@@ -1465,8 +1463,7 @@ approach is used for Service Functions.
                 {
                     "name": "Qos",
                     "ip-mgmt-address": "172.25.73.23",
-                    "type":"service-function-type: qos",
-                    "nsh-aware": true,
+                    "type":"qos",
                     "sf-data-plane-locator": [
                         {
                             "name": "qos-dpl",
@@ -1482,7 +1479,7 @@ approach is used for Service Functions.
     }
 
 All these SFs are configured on the same device as the LSF. The next
-step is to prepare Service Function Chain. SFC is symmetric.
+step is to prepare Service Function Chain.
 
 ::
 
@@ -1493,19 +1490,18 @@ step is to prepare Service Function Chain. SFC is symmetric.
             "service-function-chain": [
                 {
                     "name": "CSR3XSF",
-                    "symmetric": "true",
                     "sfc-service-function": [
                         {
                             "name": "Firewall",
-                            "type": "service-function-type: firewall"
+                            "type": "firewall"
                         },
                         {
                             "name": "Dpi",
-                            "type": "service-function-type: dpi"
+                            "type": "dpi"
                         },
                         {
                             "name": "Qos",
-                            "type": "service-function-type: qos"
+                            "type": "qos"
                         }
                     ]
                 }
@@ -1541,8 +1537,7 @@ Without a classifier, there is possibility to POST RSP directly.
     {
       "input": {
           "name": "CSR3XSF-Path-RSP",
-          "parent-service-function-path": "CSR3XSF-Path",
-          "symmetric": true
+          "parent-service-function-path": "CSR3XSF-Path"
       }
     }
 
@@ -1897,7 +1892,7 @@ Function by actual topology.
 Prerequisites
 '''''''''''''
 
--  Depolyed topology (include SFFs, SFs and their links).
+-  Deployed topology (include SFFs, SFs and their links).
 
 -  Dijkstra’s algorithm. More information on Dijkstra’s algorithm can be
    found on the wiki here:
@@ -1942,19 +1937,19 @@ service-function-forwarders.json:
             "service-function-dictionary": [
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10001,
-                  "ip": "10.3.1.103"
+                   "sf-dpl-name": "sf1dpl",
+                   "sff-dpl-name": "sff1dpl"
                 },
                 "name": "napt44-1",
-                "type": "service-function-type:napt44"
+                "type": "napt44"
               },
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10003,
-                  "ip": "10.3.1.102"
+                   "sf-dpl-name": "sf2dpl",
+                   "sff-dpl-name": "sff2dpl"
                 },
                 "name": "firewall-1",
-                "type": "service-function-type:firewall"
+                "type": "firewall"
               }
             ],
             "connected-sff-dictionary": [
@@ -1984,19 +1979,19 @@ service-function-forwarders.json:
             "service-function-dictionary": [
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10002,
-                  "ip": "10.3.1.103"
+                   "sf-dpl-name": "sf1dpl",
+                   "sff-dpl-name": "sff1dpl"
                 },
                 "name": "napt44-2",
-                "type": "service-function-type:napt44"
+                "type": "napt44"
               },
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10004,
-                  "ip": "10.3.1.101"
+                   "sf-dpl-name": "sf2dpl",
+                   "sff-dpl-name": "sff2dpl"
                 },
                 "name": "firewall-2",
-                "type": "service-function-type:firewall"
+                "type": "firewall"
               }
             ],
             "connected-sff-dictionary": [
@@ -2026,19 +2021,19 @@ service-function-forwarders.json:
             "service-function-dictionary": [
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10005,
-                  "ip": "10.3.1.104"
+                   "sf-dpl-name": "sf1dpl",
+                   "sff-dpl-name": "sff1dpl"
                 },
                 "name": "test-server",
-                "type": "service-function-type:dpi"
+                "type": "dpi"
               },
               {
                 "sff-sf-data-plane-locator": {
-                  "port": 10006,
-                  "ip": "10.3.1.102"
+                   "sf-dpl-name": "sf2dpl",
+                   "sff-dpl-name": "sff2dpl"
                 },
                 "name": "test-client",
-                "type": "service-function-type:dpi"
+                "type": "dpi"
               }
             ],
             "connected-sff-dictionary": [
@@ -2073,8 +2068,7 @@ service-functions.json:
               }
             ],
             "name": "napt44-1",
-            "type": "service-function-type:napt44",
-            "nsh-aware": true
+            "type": "napt44"
           },
           {
             "rest-uri": "http://localhost:10002",
@@ -2088,8 +2082,7 @@ service-functions.json:
               }
             ],
             "name": "napt44-2",
-            "type": "service-function-type:napt44",
-            "nsh-aware": true
+            "type": "napt44"
           },
           {
             "rest-uri": "http://localhost:10003",
@@ -2103,8 +2096,7 @@ service-functions.json:
               }
             ],
             "name": "firewall-1",
-            "type": "service-function-type:firewall",
-            "nsh-aware": true
+            "type": "firewall"
           },
           {
             "rest-uri": "http://localhost:10004",
@@ -2118,8 +2110,7 @@ service-functions.json:
               }
             ],
             "name": "firewall-2",
-            "type": "service-function-type:firewall",
-            "nsh-aware": true
+            "type": "firewall"
           },
           {
             "rest-uri": "http://localhost:10005",
@@ -2133,8 +2124,7 @@ service-functions.json:
               }
             ],
             "name": "test-server",
-            "type": "service-function-type:dpi",
-            "nsh-aware": true
+            "type": "dpi"
           },
           {
             "rest-uri": "http://localhost:10006",
@@ -2148,8 +2138,7 @@ service-functions.json:
               }
             ],
             "name": "test-client",
-            "type": "service-function-type:dpi",
-            "nsh-aware": true
+            "type": "dpi"
           }
         ]
       }
@@ -2305,7 +2294,7 @@ http://127.0.0.1:8181/restconf/config/service-function-group:service-function-gr
             "ip-mgmt-address": "10.3.1.103",
             "algorithm": "alg1",
             "name": "SFG1",
-            "type": "service-function-type:napt44",
+            "type": "napt44",
             "sfc-service-function": [
                 {
                     "name":"napt44-104"
@@ -2330,11 +2319,53 @@ SFC Proof of Transit User Guide
 Overview
 ~~~~~~~~
 
-Early Service Function Chaining (SFC) Proof of Transit (SFC Proof of
-Transit) implements Service Chaining Proof of Transit functionality on
-capable switches. After the creation of an Rendered Service Path (RSP),
-a user can configure to enable SFC proof of transit on the selected RSP
-to effect the proof of transit.
+Several deployments use traffic engineering, policy routing, segment
+routing or service function chaining (SFC) to steer packets through a
+specific set of nodes. In certain cases regulatory obligations or a
+compliance policy require to prove that all packets that are supposed to
+follow a specific path are indeed being forwarded across the exact set
+of nodes specified. I.e. if a packet flow is supposed to go through a
+series of service functions or network nodes, it has to be proven that
+all packets of the flow actually went through the service chain or
+collection of nodes specified by the policy. In case the packets of a
+flow weren’t appropriately processed, a proof of transit egress device
+would be required to identify the policy violation and take
+corresponding actions (e.g. drop or redirect the packet, send an alert
+etc.) corresponding to the policy.
+
+Service Function Chaining (SFC) Proof of Transit (SFC PoT)
+implements Service Chaining Proof of Transit functionality on capable
+network devices.  Proof of Transit defines mechanisms to securely
+prove that traffic transited the defined path.  After the creation of an
+Rendered Service Path (RSP), a user can configure to enable SFC proof
+of transit on the selected RSP to effect the proof of transit.
+
+To ensure that the data traffic follows a specified path or a function
+chain, meta-data is added to user traffic in the form of a header.  The
+meta-data is based on a 'share of a secret' and provisioned by the SFC
+PoT configuration from ODL over a secure channel to each of the nodes
+in the SFC.  This meta-data is updated at each of the service-hop while
+a designated node called the verifier checks whether the collected
+meta-data allows the retrieval of the secret.
+
+The following diagram shows the overview and essentially utilizes Shamir's
+secret sharing algorithm, where each service is given a point on the
+curve and when the packet travels through each service, it collects these
+points (meta-data) and a verifier node tries to re-construct the curve
+using the collected points, thus verifying that the packet traversed
+through all the service functions along the chain.
+
+.. figure:: ./images/sfc/sfc-pot-intro.png
+   :alt: SFC Proof of Transit overview
+
+   SFC Proof of Transit overview
+
+Transport options for different protocols includes a new TLV in SR header
+for Segment Routing, NSH Type-2 meta-data, IPv6 extension headers, IPv4
+variants and for VXLAN-GPE.  More details are captured in the following
+link.
+
+In-situ OAM: https://github.com/CiscoDevNet/iOAM
 
 Common acronyms used in the following sections:
 
@@ -2348,54 +2379,26 @@ Common acronyms used in the following sections:
 
 -  RSP - Rendered Service Path
 
--  SFCPOT - Service Function Chain Proof of Transit
+-  SFC PoT - Service Function Chain Proof of Transit
+
 
 SFC Proof of Transit Architecture
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
-When SFC Proof of Transit is initialized, all required listeners are
-registered to handle incoming data. It involves ``SfcPotNodeListener``
-which stores data about all node devices including their mountpoints
-(used here as databrokers), ``SfcPotRSPDataListener``,
-``RenderedPathListener``. ``RenderedPathListener`` is used to listen for
-RSP changes. ``SfcPotRSPDataListener`` implements RPC services to enable
-or disable SFC Proof of Transit on a particular RSP. When the SFC Proof
-of Transit is invoked, RSP listeners and service implementations are
-setup to receive SFCPOT configurations. When a user configures via a
-POST RPC call to enable SFCPOT on a particular RSP, the configuration
-drives the creation of necessary augmentations to the RSP to effect the
-SFCPOT configurations.
-
-SFC Proof of Transit details
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+SFC PoT feature is implemented as a two-part implementation with a
+north-bound handler that augments the RSP while a south-bound renderer
+auto-generates the required parameters and passes it on to the nodes
+that belong to the SFC.
 
-Several deployments use traffic engineering, policy routing, segment
-routing or service function chaining (SFC) to steer packets through a
-specific set of nodes. In certain cases regulatory obligations or a
-compliance policy require to prove that all packets that are supposed to
-follow a specific path are indeed being forwarded across the exact set
-of nodes specified. I.e. if a packet flow is supposed to go through a
-series of service functions or network nodes, it has to be proven that
-all packets of the flow actually went through the service chain or
-collection of nodes specified by the policy. In case the packets of a
-flow weren’t appropriately processed, a proof of transit egress device
-would be required to identify the policy violation and take
-corresponding actions (e.g. drop or redirect the packet, send an alert
-etc.) corresponding to the policy.
+The north-bound feature is enabled via odl-sfc-pot feature while the
+south-bound renderer is enabled via the odl-sfc-pot-netconf-renderer
+feature.  For the purposes of SFC PoT handling, both features must be
+installed.
+
+RPC handlers to augment the RSP are part of ``SfcPotRpc`` while the
+RSP augmentation to enable or disable SFC PoT feature is done via
+``SfcPotRspProcessor``.
 
-The SFCPOT approach is based on meta-data which is added to every
-packet. The meta data is updated at every hop and is used to verify
-whether a packet traversed all required nodes. A particular path is
-either described by a set of secret keys, or a set of shares of a single
-secret. Nodes on the path retrieve their individual keys or shares of a
-key (using for e.g. Shamir’s Shared Sharing Secret scheme) from a
-central controller. The complete key set is only known to the verifier-
-which is typically the ultimate node on a path that requires proof of
-transit. Each node in the path uses its secret or share of the secret to
-update the meta-data of the packets as the packets pass through the
-node. When the verifier receives a packet, it can use its key(s) along
-with the meta-data to validate whether the packet traversed the service
-chain correctly.
 
 SFC Proof of Transit entities
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -2406,15 +2409,10 @@ Proof of Transit for a particular RSP is enabled by an RPC request to
 the controller along with necessary parameters to control some of the
 aspects of the SFC Proof of Transit process.
 
-The RPC handler identifies the RSP and generates SFC Proof of Transit
-parameters like secret share, secret etc., and adds the generated SFCPOT
-configuration parameters to SFC main as well as the various SFC hops.
-The last node in the SFC is configured as a verifier node to allow
-SFCPOT Proof of Transit process to be completed.
-
-The SFCPOT configuration generators and related handling are done by
-``SfcPotAPI``, ``SfcPotConfigGenerator``, ``SfcPotListener``,
-``SfcPotPolyAPI``, ``SfcPotPolyClassAPI`` and ``SfcPotPolyClass``.
+The RPC handler identifies the RSP and adds PoT feature meta-data like
+enable/disable, number of PoT profiles, profiles refresh parameters etc.,
+that directs the south-bound renderer appropriately when RSP changes
+are noticed via call-backs in the renderer handlers.
 
 Administering SFC Proof of Transit
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -2436,6 +2434,10 @@ features must be installed:
 
 -  odl-sfc-pot
 
+Please note that the odl-sfc-pot-netconf-renderer or other renderers in future
+must be installed for the feature to take full-effect.  The details of the renderer
+features are described in other parts of this document.
+
 SFC Proof of Transit Tutorial
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 
@@ -2449,10 +2451,13 @@ Preconditions
 ^^^^^^^^^^^^^
 
 To enable a device to handle SFC Proof of Transit, it is expected that
-the netconf server device advertise capability as under ioam-scv.yang
-present under src/main/yang folder of sfc-pot feature. It is also
-expected that netconf notifications be enabled and its support
-capability advertised as capabilities.
+the NETCONF node device advertise capability as under ioam-sb-pot.yang
+present under sfc-model/src/main/yang folder. It is also expected that base
+NETCONF support be enabled and its support capability advertised as capabilities.
+
+NETCONF support:``urn:ietf:params:netconf:base:1.0``
+
+PoT support: ``(urn:cisco:params:xml:ns:yang:sfc-ioam-sb-pot?revision=2017-01-12)sfc-ioam-sb-pot``
 
 It is also expected that the devices are netconf mounted and available
 in the topology-netconf store.
@@ -2460,49 +2465,154 @@ in the topology-netconf store.
 Instructions
 ^^^^^^^^^^^^
 
-When SFC Proof of Transit is installed, all netconf nodes in
-topology-netconf are processed and all capable nodes with accessible
-mountpoints are cached.
+When SFC Proof of Transit is installed, all netconf nodes in topology-netconf
+are processed and all capable nodes with accessible mountpoints are cached.
 
-First step is to create the required RSP as usually done.
+First step is to create the required RSP as is usually done using RSP creation
+steps in SFC main.
 
 Once RSP name is available it is used to send a POST RPC to the
 controller similar to below:
 
-::
+POST -
+http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path/
 
-    POST ./restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path
+.. code-block:: json
 
     {
-      "input": {
-        "sfc-ioam-pot-rsp-name": "rsp1"
-      }
+        "input":
+        {
+            "sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
+            "ioam-pot-enable":true,
+            "ioam-pot-num-profiles":2,
+            "ioam-pot-bit-mask":"bits32",
+            "refresh-period-time-units":"milliseconds",
+            "refresh-period-value":5000
+        }
     }
 
 The following can be used to disable the SFC Proof of Transit on an RSP
-which removes the augmentations and stores back the RSP without the
-SFCPOT enabled features and also sending down a delete configuration to
-the SFCPOT configuration sub-tree in the nodes.
+which disables the PoT feature.
 
-::
+POST -
+http://ODL-IP:8181/restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path/
 
-    POST ./restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path
+.. code-block:: json
 
     {
-      "input": {
-        "sfc-ioam-pot-rsp-name": "rsp1"
-      }
+        "input":
+        {
+            "sfc-ioam-pot-rsp-name": "sfc-path-3sf3sff",
+        }
     }
 
+SFC PoT NETCONF Renderer User Guide
+-----------------------------------
+
+Overview
+~~~~~~~~
+
+The SFC Proof of Transit (PoT) NETCONF renderer implements SFC Proof of
+Transit functionality on NETCONF-capable devices, that have advertised
+support for in-situ OAM (iOAM) support.
+
+It listens for an update to an existing RSP with enable or disable proof of
+transit support and adds the auto-generated SFC PoT configuration parameters
+to all the SFC hop nodes.  The last node in the SFC is configured as a
+verifier node to allow SFC PoT process to be completed.
+
+Common acronyms are used as below:
+
+- SF - Service Function
+
+- SFC - Service Function Chain
+
+- RSP - Rendered Service Path
+
+- SFF - Service Function Forwarder
+
+
+Mapping to SFC entities
+~~~~~~~~~~~~~~~~~~~~~~~
+
+The renderer module listens to RSP updates in ``SfcPotNetconfRSPListener``
+and triggers configuration generation in ``SfcPotNetconfIoam`` class.  Node
+arrival and leaving are managed via ``SfcPotNetconfNodeManager`` and
+``SfcPotNetconfNodeListener``.  In addition there is a timer thread that
+runs to generate configuration periodically to refresh the profiles in the
+nodes that are part of the SFC.
+
+
+Administering SFC PoT NETCONF Renderer
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To use the SFC Proof of Transit Karaf, the following Karaf features must
+be installed:
+
+-  odl-sfc-model
+
+-  odl-sfc-provider
+
+-  odl-sfc-netconf
+
+-  odl-restconf-all
+
+-  odl-netconf-topology
+
+-  odl-netconf-connector-all
+
+-  odl-sfc-pot
+
+-  odl-sfc-pot-netconf-renderer
+
+
+SFC PoT NETCONF Renderer Tutorial
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Overview
+^^^^^^^^
+
+This tutorial is a simple example how to enable SFC PoT on NETCONF-capable
+devices.
+
+Preconditions
+^^^^^^^^^^^^^
+
+The NETCONF-capable device will have to support sfc-ioam-sb-pot.yang file.
+
+It is expected that a NETCONF-capable VPP device has Honeycomb (Hc2vpp)
+Java-based agent that helps to translate between NETCONF and VPP internal
+APIs.
+
+More details are here:
+In-situ OAM: https://github.com/CiscoDevNet/iOAM
+
+Steps
+^^^^^
+When the SFC PoT NETCONF renderer module is installed, all NETCONF nodes in
+topology-netconf are processed and all sfc-ioam-sb-pot yang capable nodes
+with accessible mountpoints are cached.
+
+The first step is to create RSP for the SFC as per SFC guidelines above.
+
+Enable SFC PoT is done on the RSP via RESTCONF to the ODL as outlined above.
+
+Internally, the NETCONF renderer will act on the callback to a modified RSP
+that has PoT enabled.
+
+In-situ OAM algorithms for auto-generation of SFC PoT parameters are
+generated automatically and sent to these nodes via NETCONF.
+
 Logical Service Function Forwarder
 ----------------------------------
 
 Overview
 ~~~~~~~~
 
+.. _sfc-user-guide-logical-sff-motivation:
+
 Rationale
 ^^^^^^^^^
-
 When the current SFC is deployed in a cloud environment, it is assumed that each
 switch connected to a Service Function is configured as a Service Function Forwarder and
 each Service Function is connected to its Service Function Forwarder depending on the
@@ -2552,48 +2662,6 @@ YANG model can be found here `logical SFF model
 How to configure the Logical SFF
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 The following are examples to configure the Logical SFF:
-
-::
-
-    curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-node:service-nodes/
-
-**Service Nodes JSON.**
-
-::
-
-    {
-    "service-nodes": {
-        "service-node": [
-            {
-                "name": "classifier1",
-                "service-function": [
-                ],
-                "ip-mgmt-address": "192.168.1.10"
-            },
-            {
-                "name": "sf1",
-                "service-function": [
-                    "dpi-1"
-                ],
-                "ip-mgmt-address": "192.168.1.30"
-            },
-            {
-                "name": "sf2",
-                "service-function": [
-                    "firewall-1"
-                ],
-                "ip-mgmt-address": "192.168.1.40"
-            },
-            {
-                "name": "classifier2",
-                "service-function": [
-                ],
-                "ip-mgmt-address": "192.168.1.60"
-            }
-        ]
-    }
-    }
-
 ::
 
     curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/restconf/config/service-function:service-functions/
@@ -2606,29 +2674,26 @@ The following are examples to configure the Logical SFF:
     "service-functions": {
         "service-function": [
             {
-                "name": "dpi-1",
-                "ip-mgmt-address": "192.168.1.30",
-                "rest-uri": "http://192.168.1.30:5000",
-                "type": "dpi",
-                "nsh-aware": "true",
+                "name": "firewall-1",
+                "type": "firewall",
                 "sf-data-plane-locator": [
                     {
-                        "name": "dpi-1-dpl",
-                        "interface-name": "e0fffc12-a46e-4575-bf36-8383c8edefed",
+                        "name": "firewall-dpl",
+                        "interface-name": "eccb57ae-5a2e-467f-823e-45d7bb2a6a9a",
+                        "transport": "service-locator:eth-nsh",
                         "service-function-forwarder": "sfflogical1"
+
                     }
                 ]
             },
             {
-                "name": "firewall-1",
-                "ip-mgmt-address": "192.168.1.40",
-                "rest-uri": "http://192.168.1.40:5000",
-                "type": "firewall",
-                "nsh-aware": "true",
+                "name": "dpi-1",
+                "type": "dpi",
                 "sf-data-plane-locator": [
                     {
-                        "name": "firewall-1-dpl",
-                        "interface-name": "952a5486-d1a5-40cd-a7c1-cc61e59a2b36",
+                        "name": "dpi-dpl",
+                        "interface-name": "df15ac52-e8ef-4e9a-8340-ae0738aba0c0",
+                        "transport": "service-locator:eth-nsh",
                         "service-function-forwarder": "sfflogical1"
                     }
                 ]
@@ -2668,7 +2733,6 @@ The following are examples to configure the Logical SFF:
         "service-function-chain": [
             {
                 "name": "SFC1",
-                "symmetric": "true",
                 "sfc-service-function": [
                     {
                         "name": "dpi-abstract1",
@@ -2682,7 +2746,6 @@ The following are examples to configure the Logical SFF:
             },
             {
                 "name": "SFC2",
-                "symmetric": "true",
                 "sfc-service-function": [
                     {
                         "name": "dpi-abstract1",
@@ -2693,3 +2756,282 @@ The following are examples to configure the Logical SFF:
         ]
     }
     }
+
+::
+
+    curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8182/restconf/config/service-function-chain:service-function-paths/
+
+**Service Function Paths JSON.**
+
+::
+
+    {
+    "service-function-paths": {
+        "service-function-path": [
+            {
+                "name": "SFP1",
+                "service-chain-name": "SFC1",
+                "starting-index": 255,
+                "symmetric": "true",
+                "context-metadata": "NSH1",
+                "transport-type": "service-locator:vxlan-gpe"
+
+            }
+        ]
+    }
+    }
+
+As a result of above configuration, OpenDaylight renders the needed flows in all involved SFFs. Those flows implement:
+
+- Two Rendered Service Paths:
+
+  - dpi-1 (SF1), firewall-1 (SF2)
+  - firewall-1 (SF2), dpi-1 (SF1)
+
+- The communication between SFFs and SFs based on eth-nsh
+
+- The communication between SFFs based on vxlan-gpe
+
+The following picture shows a topology and traffic flow (in green) which corresponds to the above configuration.
+
+.. figure:: ./images/sfc/single-logical-sff-example.png
+   :alt: Logical SFF Example
+   :width: 800px
+   :height: 600px
+
+   Logical SFF Example
+
+
+
+The Logical SFF functionality allows OpenDaylight to find out the SFFs holding the SFs involved in a path. In this example
+the SFFs affected are Node3 and Node4 thus the controller renders the flows containing NSH parameters just in those SFFs.
+
+Here you have the new flows rendered in Node3 and Node4 which implement the NSH protocol. Every Rendered Service Path is represented
+by an NSP value. We provisioned a symmetric RSP so we get two NSPs: 8388613 and 5. Node3 holds the first SF of NSP 8388613 and
+the last SF of NSP 5. Node 4 holds the first SF of NSP 5 and the last SF of NSP 8388613. Both Node3 and Node4 will pop the NSH header
+when the received packet has gone through the last SF of its path.
+
+
+**Rendered flows Node 3**
+
+::
+
+ cookie=0x14, duration=59.264s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
+ cookie=0x14, duration=59.194s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
+ cookie=0x14, duration=59.257s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0x14, duration=59.189s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0xba5eba1100000203, duration=59.213s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,resubmit(,17)
+ cookie=0xba5eba1100000201, duration=59.213s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000201, duration=59.188s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000201, duration=59.182s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:6
+
+**Rendered Flows Node 4**
+
+::
+
+ cookie=0x14, duration=69.040s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
+ cookie=0x14, duration=69.008s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
+ cookie=0x14, duration=69.040s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0x14, duration=69.005s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000201, duration=69.029s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:1
+ cookie=0xba5eba1100000201, duration=68.999s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000203, duration=68.996s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_src,resubmit(,17)
+
+
+An interesting scenario to show the Logical SFF strength is the migration of a SF from a compute node to another.
+The OpenDaylight will learn the new topology by itself, then it will re-render the new flows to the new SFFs affected.
+
+.. figure:: ./images/sfc/single-logical-sff-example-migration.png
+   :alt: Logical SFF - SF Migration Example
+   :width: 800px
+   :height: 600px
+
+   Logical SFF - SF Migration Example
+
+
+In our example, SF2 is moved from Node4 to Node2 then OpenDaylight removes NSH specific flows from Node4 and puts them in Node2.
+Check below flows showing this effect. Now Node3 keeps holding the first SF of NSP 8388613 and the last SF of NSP 5;
+but Node2 becomes the new holder of the first SF of NSP 5 and the last SF of NSP 8388613.
+
+
+**Rendered Flows Node 3 After Migration**
+
+::
+
+ cookie=0x14, duration=64.044s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
+ cookie=0x14, duration=63.947s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
+ cookie=0x14, duration=64.044s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=5 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0x14, duration=63.947s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=8388613 actions=load:0x8e0a37cc9094->NXM_NX_ENCAP_ETH_SRC[],load:0x6ee006b4c51e->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0xba5eba1100000201, duration=64.034s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000203, duration=64.034s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=5 actions=pop_nsh,set_field:6e:e0:06:b4:c5:1e->eth_src,resubmit(,17)
+ cookie=0xba5eba1100000201, duration=63.947s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=8388613 actions=load:0x800->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000201, duration=63.942s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=set_field:0->tun_id,output:2
+
+**Rendered Flows Node 2 After Migration**
+
+::
+
+ cookie=0x14, duration=56.856s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=5 actions=goto_table:86
+ cookie=0x14, duration=56.755s, table=83, n_packets=0, n_bytes=0, priority=250,nsp=8388613 actions=goto_table:86
+ cookie=0x14, duration=56.847s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=255,nsp=5 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0x14, duration=56.755s, table=86, n_packets=0, n_bytes=0, priority=550,nsi=254,nsp=8388613 actions=load:0xbea93873f4fa->NXM_NX_ENCAP_ETH_SRC[],load:0x214845ea85d->NXM_NX_ENCAP_ETH_DST[],goto_table:87
+ cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=255,nsp=5 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000201, duration=56.823s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=5 actions=set_field:0->tun_id,output:4
+ cookie=0xba5eba1100000201, duration=56.755s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=254,nsp=8388613 actions=load:0x1100->NXM_NX_REG6[],resubmit(,220)
+ cookie=0xba5eba1100000203, duration=56.750s, table=87, n_packets=0, n_bytes=0, priority=650,nsi=253,nsp=8388613 actions=pop_nsh,set_field:02:14:84:5e:a8:5d->eth_src,resubmit(,17)
+
+**Rendered Flows Node 4 After Migration**
+
+::
+
+ -- No flows for NSH processing --
+
+.. _sfc-user-guide-classifier-impacts:
+
+Classifier impacts
+~~~~~~~~~~~~~~~~~~
+
+As previously mentioned, in the :ref:`Logical SFF rationale
+<sfc-user-guide-logical-sff-motivation>`, the Logical SFF feature relies on
+Genius to get the dataplane IDs of the OpenFlow switches, in order to properly
+steer the traffic through the chain.
+
+Since one of the classifier's objectives is to steer the packets *into* the
+SFC domain, the classifier has to be aware of where the first Service
+Function is located - if it migrates somewhere else, the classifier table
+has to be updated accordingly, thus enabling the seemless migration of Service
+Functions.
+
+For this feature, mobility of the client VM is out of scope, and should be
+managed by its high-availability module, or VNF manager.
+
+Keep in mind that classification *always* occur in the compute-node where
+the client VM (i.e. traffic origin) is running.
+
+How to attach the classifier to a Logical SFF
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In order to leverage this functionality, the classifier has to be configured
+using a Logical SFF as an attachment-point, specifying within it the neutron
+port to classify.
+
+The following examples show how to configure an ACL, and a classifier having
+a Logical SFF as an attachment-point:
+
+**Configure an ACL**
+
+The following ACL enables traffic intended for port 80 within the subnetwork
+192.168.2.0/24, for RSP1 and RSP1-Reverse.
+
+::
+
+        {
+          "access-lists": {
+            "acl": [
+              {
+                "acl-name": "ACL1",
+                "acl-type": "ietf-access-control-list:ipv4-acl",
+                "access-list-entries": {
+                  "ace": [
+                    {
+                      "rule-name": "ACE1",
+                      "actions": {
+                        "service-function-acl:rendered-service-path": "RSP1"
+                      },
+                      "matches": {
+                        "destination-ipv4-network": "192.168.2.0/24",
+                        "source-ipv4-network": "192.168.2.0/24",
+                        "protocol": "6",
+                        "source-port-range": {
+                            "lower-port": 0
+                        },
+                        "destination-port-range": {
+                            "lower-port": 80
+                        }
+                      }
+                    }
+                  ]
+                }
+              },
+              {
+                "acl-name": "ACL2",
+                "acl-type": "ietf-access-control-list:ipv4-acl",
+                "access-list-entries": {
+                  "ace": [
+                    {
+                      "rule-name": "ACE2",
+                      "actions": {
+                        "service-function-acl:rendered-service-path": "RSP1-Reverse"
+                      },
+                      "matches": {
+                        "destination-ipv4-network": "192.168.2.0/24",
+                        "source-ipv4-network": "192.168.2.0/24",
+                        "protocol": "6",
+                        "source-port-range": {
+                            "lower-port": 80
+                        },
+                        "destination-port-range": {
+                            "lower-port": 0
+                        }
+                      }
+                    }
+                  ]
+                }
+              }
+            ]
+          }
+        }
+
+::
+
+  curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/ietf-access-control-list:access-lists/
+
+**Configure a classifier JSON**
+
+The following JSON provisions a classifier, having a Logical SFF as an
+attachment point. The value of the field 'interface' is where you
+indicate the neutron ports of the VMs you want to classify.
+
+::
+
+        {
+          "service-function-classifiers": {
+            "service-function-classifier": [
+              {
+                "name": "Classifier1",
+                "scl-service-function-forwarder": [
+                  {
+                    "name": "sfflogical1",
+                    "interface": "09a78ba3-78ba-40f5-a3ea-1ce708367f2b"
+                  }
+                ],
+                "acl": {
+                    "name": "ACL1",
+                    "type": "ietf-access-control-list:ipv4-acl"
+                 }
+              }
+            ]
+          }
+        }
+
+::
+
+  curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-classifier:service-function-classifiers/
+
+.. _sfc-user-guide-pipeline-impacts:
+
+SFC pipeline impacts
+~~~~~~~~~~~~~~~~~~~~
+
+After binding SFC service with a particular interface by means of Genius, as explained in the :ref:`Genius User Guide <genius-user-guide-binding-services>`,
+the entry point in the SFC pipeline will be table 82 (SFC_TRANSPORT_CLASSIFIER_TABLE), and from that point, packet
+processing will be similar to the :ref:`SFC OpenFlow pipeline <sfc-user-guide-sfc-of-pipeline>`, just with another set
+of specific tables for the SFC service.
+
+This picture shows the SFC pipeline after service integration with Genius:
+
+.. figure:: ./images/sfc/LSFF_pipeline.png
+   :alt: SFC Logical SFF OpenFlow pipeline
+
+   SFC Logical SFF OpenFlow pipeline