BUG-5280: add basic concept of ClientSnapshot
[controller.git] / opendaylight / md-sal / sal-distributed-datastore / src / main / java / org / opendaylight / controller / cluster / databroker / actors / dds / AbstractProxyTransaction.java
1 /*
2  * Copyright (c) 2016 Cisco Systems, Inc. and others.  All rights reserved.
3  *
4  * This program and the accompanying materials are made available under the
5  * terms of the Eclipse Public License v1.0 which accompanies this distribution,
6  * and is available at http://www.eclipse.org/legal/epl-v10.html
7  */
8 package org.opendaylight.controller.cluster.databroker.actors.dds;
9
10 import akka.actor.ActorRef;
11 import com.google.common.base.Optional;
12 import com.google.common.base.Preconditions;
13 import com.google.common.base.Throwables;
14 import com.google.common.base.Verify;
15 import com.google.common.util.concurrent.CheckedFuture;
16 import com.google.common.util.concurrent.ListenableFuture;
17 import com.google.common.util.concurrent.SettableFuture;
18 import java.util.ArrayDeque;
19 import java.util.Deque;
20 import java.util.Iterator;
21 import java.util.concurrent.CountDownLatch;
22 import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
23 import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
24 import java.util.function.Consumer;
25 import javax.annotation.Nonnull;
26 import javax.annotation.Nullable;
27 import javax.annotation.concurrent.GuardedBy;
28 import javax.annotation.concurrent.NotThreadSafe;
29 import org.opendaylight.controller.cluster.access.client.ConnectionEntry;
30 import org.opendaylight.controller.cluster.access.commands.TransactionAbortRequest;
31 import org.opendaylight.controller.cluster.access.commands.TransactionAbortSuccess;
32 import org.opendaylight.controller.cluster.access.commands.TransactionCanCommitSuccess;
33 import org.opendaylight.controller.cluster.access.commands.TransactionCommitSuccess;
34 import org.opendaylight.controller.cluster.access.commands.TransactionDoCommitRequest;
35 import org.opendaylight.controller.cluster.access.commands.TransactionPreCommitRequest;
36 import org.opendaylight.controller.cluster.access.commands.TransactionPreCommitSuccess;
37 import org.opendaylight.controller.cluster.access.commands.TransactionRequest;
38 import org.opendaylight.controller.cluster.access.concepts.Request;
39 import org.opendaylight.controller.cluster.access.concepts.RequestFailure;
40 import org.opendaylight.controller.cluster.access.concepts.Response;
41 import org.opendaylight.controller.cluster.access.concepts.TransactionIdentifier;
42 import org.opendaylight.mdsal.common.api.ReadFailedException;
43 import org.opendaylight.yangtools.concepts.Identifiable;
44 import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier;
45 import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode;
46 import org.slf4j.Logger;
47 import org.slf4j.LoggerFactory;
48
49 /**
50  * Class translating transaction operations towards a particular backend shard.
51  *
52  * <p>
53  * This class is not safe to access from multiple application threads, as is usual for transactions. Internal state
54  * transitions coming from interactions with backend are expected to be thread-safe.
55  *
56  * <p>
57  * This class interacts with the queueing mechanism in ClientActorBehavior, hence once we arrive at a decision
58  * to use either a local or remote implementation, we are stuck with it. We can re-evaluate on the next transaction.
59  *
60  * @author Robert Varga
61  */
62 abstract class AbstractProxyTransaction implements Identifiable<TransactionIdentifier> {
63     /**
64      * Marker object used instead of read-type of requests, which are satisfied only once. This has a lower footprint
65      * and allows compressing multiple requests into a single entry.
66      */
67     @NotThreadSafe
68     private static final class IncrementSequence {
69         private long delta = 1;
70
71         long getDelta() {
72             return delta;
73         }
74
75         void incrementDelta() {
76             delta++;
77         }
78     }
79
80     // Generic state base class. Direct instances are used for fast paths, sub-class is used for successor transitions
81     private static class State {
82         private final String string;
83
84         State(final String string) {
85             this.string = Preconditions.checkNotNull(string);
86         }
87
88         @Override
89         public final String toString() {
90             return string;
91         }
92     }
93
94     // State class used when a successor has interfered. Contains coordinator latch, the successor and previous state
95     private static final class SuccessorState extends State {
96         private final CountDownLatch latch = new CountDownLatch(1);
97         private AbstractProxyTransaction successor;
98         private State prevState;
99
100         SuccessorState() {
101             super("successor");
102         }
103
104         // Synchronize with succession process and return the successor
105         AbstractProxyTransaction await() {
106             try {
107                 latch.await();
108             } catch (InterruptedException e) {
109                 LOG.warn("Interrupted while waiting for latch of {}", successor);
110                 throw Throwables.propagate(e);
111             }
112             return successor;
113         }
114
115         void finish() {
116             latch.countDown();
117         }
118
119         State getPrevState() {
120             return prevState;
121         }
122
123         void setPrevState(final State prevState) {
124             Verify.verify(this.prevState == null);
125             this.prevState = Preconditions.checkNotNull(prevState);
126         }
127
128         // To be called from safe contexts, where successor is known to be completed
129         AbstractProxyTransaction getSuccessor() {
130             return Verify.verifyNotNull(successor);
131         }
132
133         void setSuccessor(final AbstractProxyTransaction successor) {
134             Verify.verify(this.successor == null);
135             this.successor = Preconditions.checkNotNull(successor);
136         }
137     }
138
139     private static final Logger LOG = LoggerFactory.getLogger(AbstractProxyTransaction.class);
140     private static final AtomicIntegerFieldUpdater<AbstractProxyTransaction> SEALED_UPDATER =
141             AtomicIntegerFieldUpdater.newUpdater(AbstractProxyTransaction.class, "sealed");
142     private static final AtomicReferenceFieldUpdater<AbstractProxyTransaction, State> STATE_UPDATER =
143             AtomicReferenceFieldUpdater.newUpdater(AbstractProxyTransaction.class, State.class, "state");
144     private static final State OPEN = new State("open");
145     private static final State SEALED = new State("sealed");
146     private static final State FLUSHED = new State("flushed");
147
148     // Touched from client actor thread only
149     private final Deque<Object> successfulRequests = new ArrayDeque<>();
150     private final ProxyHistory parent;
151
152     // Accessed from user thread only, which may not access this object concurrently
153     private long sequence;
154
155     /*
156      * Atomic state-keeping is required to synchronize the process of propagating completed transaction state towards
157      * the backend -- which may include a successor.
158      *
159      * Successor, unlike {@link AbstractProxyTransaction#seal()} is triggered from the client actor thread, which means
160      * the successor placement needs to be atomic with regard to the application thread.
161      *
162      * In the common case, the application thread performs performs the seal operations and then "immediately" sends
163      * the corresponding message. The uncommon case is when the seal and send operations race with a connect completion
164      * or timeout, when a successor is injected.
165      *
166      * This leaves the problem of needing to completely transferring state just after all queued messages are replayed
167      * after a successor was injected, so that it can be properly sealed if we are racing. Further complication comes
168      * from lock ordering, where the successor injection works with a locked queue and locks proxy objects -- leading
169      * to a potential AB-BA deadlock in case of a naive implementation.
170      *
171      * For tracking user-visible state we use a single volatile int, which is flipped atomically from 0 to 1 exactly
172      * once in {@link AbstractProxyTransaction#seal()}. That keeps common operations fast, as they need to perform
173      * only a single volatile read to assert state correctness.
174      *
175      * For synchronizing client actor (successor-injecting) and user (commit-driving) thread, we keep a separate state
176      * variable. It uses pre-allocated objects for fast paths (i.e. no successor present) and a per-transition object
177      * for slow paths (when successor is injected/present).
178      */
179     private volatile int sealed = 0;
180     private volatile State state = OPEN;
181
182     AbstractProxyTransaction(final ProxyHistory parent) {
183         this.parent = Preconditions.checkNotNull(parent);
184     }
185
186     final ActorRef localActor() {
187         return parent.localActor();
188     }
189
190     private void incrementSequence(final long delta) {
191         sequence += delta;
192         LOG.debug("Transaction {} incremented sequence to {}", this, sequence);
193     }
194
195     final long nextSequence() {
196         final long ret = sequence++;
197         LOG.debug("Transaction {} allocated sequence {}", this, ret);
198         return ret;
199     }
200
201     final void delete(final YangInstanceIdentifier path) {
202         checkReadWrite();
203         checkNotSealed();
204         doDelete(path);
205     }
206
207     final void merge(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data) {
208         checkReadWrite();
209         checkNotSealed();
210         doMerge(path, data);
211     }
212
213     final void write(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data) {
214         checkReadWrite();
215         checkNotSealed();
216         doWrite(path, data);
217     }
218
219     final CheckedFuture<Boolean, ReadFailedException> exists(final YangInstanceIdentifier path) {
220         checkNotSealed();
221         return doExists(path);
222     }
223
224     final CheckedFuture<Optional<NormalizedNode<?, ?>>, ReadFailedException> read(final YangInstanceIdentifier path) {
225         checkNotSealed();
226         return doRead(path);
227     }
228
229     final void sendRequest(final TransactionRequest<?> request, final Consumer<Response<?, ?>> callback) {
230         LOG.debug("Transaction proxy {} sending request {} callback {}", this, request, callback);
231         parent.sendRequest(request, callback);
232     }
233
234     /**
235      * Seal this transaction before it is either committed or aborted.
236      */
237     final void seal() {
238         // Transition user-visible state first
239         final boolean success = SEALED_UPDATER.compareAndSet(this, 0, 1);
240         Preconditions.checkState(success, "Proxy %s was already sealed", getIdentifier());
241         doSeal();
242         parent.onTransactionSealed(this);
243
244         // Now deal with state transfer, which can occur via successor or a follow-up canCommit() or directCommit().
245         if (!STATE_UPDATER.compareAndSet(this, OPEN, SEALED)) {
246             // Slow path: wait for the successor to complete
247             final AbstractProxyTransaction successor = awaitSuccessor();
248
249             // At this point the successor has completed transition and is possibly visible by the user thread, which is
250             // still stuck here. The successor has not seen final part of our state, nor the fact it is sealed.
251             // Propagate state and seal the successor.
252             flushState(successor);
253             successor.seal();
254         }
255     }
256
257     private void checkNotSealed() {
258         Preconditions.checkState(sealed == 0, "Transaction %s has already been sealed", getIdentifier());
259     }
260
261     private void checkSealed() {
262         Preconditions.checkState(sealed != 0, "Transaction %s has not been sealed yet", getIdentifier());
263     }
264
265     private SuccessorState getSuccessorState() {
266         final State local = state;
267         Verify.verify(local instanceof SuccessorState, "State %s has unexpected class", local);
268         return (SuccessorState) local;
269     }
270
271     private void checkReadWrite() {
272         if (isSnapshotOnly()) {
273             throw new UnsupportedOperationException("Transaction " + getIdentifier() + " is a read-only snapshot");
274         }
275     }
276
277     final void recordSuccessfulRequest(final @Nonnull TransactionRequest<?> req) {
278         successfulRequests.add(Verify.verifyNotNull(req));
279     }
280
281     final void recordFinishedRequest() {
282         final Object last = successfulRequests.peekLast();
283         if (last instanceof IncrementSequence) {
284             ((IncrementSequence) last).incrementDelta();
285         } else {
286             successfulRequests.addLast(new IncrementSequence());
287         }
288     }
289
290     /**
291      * Abort this transaction. This is invoked only for read-only transactions and will result in an explicit message
292      * being sent to the backend.
293      */
294     final void abort() {
295         checkNotSealed();
296         doAbort();
297         parent.abortTransaction(this);
298     }
299
300     final void abort(final VotingFuture<Void> ret) {
301         checkSealed();
302
303         sendAbort(t -> {
304             if (t instanceof TransactionAbortSuccess) {
305                 ret.voteYes();
306             } else if (t instanceof RequestFailure) {
307                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
308             } else {
309                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
310             }
311
312             // This is a terminal request, hence we do not need to record it
313             LOG.debug("Transaction {} abort completed", this);
314             parent.completeTransaction(this);
315         });
316     }
317
318     final void sendAbort(final Consumer<Response<?, ?>> callback) {
319         sendRequest(new TransactionAbortRequest(getIdentifier(), nextSequence(), localActor()), callback);
320     }
321
322     /**
323      * Commit this transaction, possibly in a coordinated fashion.
324      *
325      * @param coordinated True if this transaction should be coordinated across multiple participants.
326      * @return Future completion
327      */
328     final ListenableFuture<Boolean> directCommit() {
329         checkReadWrite();
330         checkSealed();
331
332         // Precludes startReconnect() from interfering with the fast path
333         synchronized (this) {
334             if (STATE_UPDATER.compareAndSet(this, SEALED, FLUSHED)) {
335                 final SettableFuture<Boolean> ret = SettableFuture.create();
336                 sendRequest(Verify.verifyNotNull(commitRequest(false)), t -> {
337                     if (t instanceof TransactionCommitSuccess) {
338                         ret.set(Boolean.TRUE);
339                     } else if (t instanceof RequestFailure) {
340                         ret.setException(((RequestFailure<?, ?>) t).getCause());
341                     } else {
342                         ret.setException(new IllegalStateException("Unhandled response " + t.getClass()));
343                     }
344
345                     // This is a terminal request, hence we do not need to record it
346                     LOG.debug("Transaction {} directCommit completed", this);
347                     parent.completeTransaction(this);
348                 });
349
350                 return ret;
351             }
352         }
353
354         // We have had some interference with successor injection, wait for it to complete and defer to the successor.
355         return awaitSuccessor().directCommit();
356     }
357
358     final void canCommit(final VotingFuture<?> ret) {
359         checkReadWrite();
360         checkSealed();
361
362         // Precludes startReconnect() from interfering with the fast path
363         synchronized (this) {
364             if (STATE_UPDATER.compareAndSet(this, SEALED, FLUSHED)) {
365                 final TransactionRequest<?> req = Verify.verifyNotNull(commitRequest(true));
366
367                 sendRequest(req, t -> {
368                     if (t instanceof TransactionCanCommitSuccess) {
369                         ret.voteYes();
370                     } else if (t instanceof RequestFailure) {
371                         ret.voteNo(((RequestFailure<?, ?>) t).getCause());
372                     } else {
373                         ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
374                     }
375
376                     recordSuccessfulRequest(req);
377                     LOG.debug("Transaction {} canCommit completed", this);
378                 });
379
380                 return;
381             }
382         }
383
384         // We have had some interference with successor injection, wait for it to complete and defer to the successor.
385         awaitSuccessor().canCommit(ret);
386     }
387
388     private AbstractProxyTransaction awaitSuccessor() {
389         return getSuccessorState().await();
390     }
391
392     final void preCommit(final VotingFuture<?> ret) {
393         checkReadWrite();
394         checkSealed();
395
396         final TransactionRequest<?> req = new TransactionPreCommitRequest(getIdentifier(), nextSequence(),
397             localActor());
398         sendRequest(req, t -> {
399             if (t instanceof TransactionPreCommitSuccess) {
400                 ret.voteYes();
401             } else if (t instanceof RequestFailure) {
402                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
403             } else {
404                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
405             }
406
407             recordSuccessfulRequest(req);
408             LOG.debug("Transaction {} preCommit completed", this);
409         });
410     }
411
412     final void doCommit(final VotingFuture<?> ret) {
413         checkReadWrite();
414         checkSealed();
415
416         sendRequest(new TransactionDoCommitRequest(getIdentifier(), nextSequence(), localActor()), t -> {
417             if (t instanceof TransactionCommitSuccess) {
418                 ret.voteYes();
419             } else if (t instanceof RequestFailure) {
420                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
421             } else {
422                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
423             }
424
425             LOG.debug("Transaction {} doCommit completed", this);
426             parent.completeTransaction(this);
427         });
428     }
429
430     // Called with the connection unlocked
431     final synchronized void startReconnect() {
432         // At this point canCommit/directCommit are blocked, we assert a new successor state, retrieving the previous
433         // state. This method is called with the queue still unlocked.
434         final SuccessorState nextState = new SuccessorState();
435         final State prevState = STATE_UPDATER.getAndSet(this, nextState);
436
437         LOG.debug("Start reconnect of proxy {} previous state {}", this, prevState);
438         Verify.verify(!(prevState instanceof SuccessorState), "Proxy %s duplicate reconnect attempt after %s", this,
439             prevState);
440
441         // We have asserted a slow-path state, seal(), canCommit(), directCommit() are forced to slow paths, which will
442         // wait until we unblock nextState's latch before accessing state. Now we record prevState for later use and we
443         // are done.
444         nextState.setPrevState(prevState);
445     }
446
447     // Called with the connection locked
448     final void replayMessages(final AbstractProxyTransaction successor,
449             final Iterable<ConnectionEntry> enqueuedEntries) {
450         final SuccessorState local = getSuccessorState();
451         local.setSuccessor(successor);
452
453         // Replay successful requests first
454         for (Object obj : successfulRequests) {
455             if (obj instanceof TransactionRequest) {
456                 LOG.debug("Forwarding successful request {} to successor {}", obj, successor);
457                 successor.handleForwardedRemoteRequest((TransactionRequest<?>) obj, null);
458             } else {
459                 Verify.verify(obj instanceof IncrementSequence);
460                 successor.incrementSequence(((IncrementSequence) obj).getDelta());
461             }
462         }
463         LOG.debug("{} replayed {} successful requests", getIdentifier(), successfulRequests.size());
464         successfulRequests.clear();
465
466         // Now replay whatever is in the connection
467         final Iterator<ConnectionEntry> it = enqueuedEntries.iterator();
468         while (it.hasNext()) {
469             final ConnectionEntry e = it.next();
470             final Request<?, ?> req = e.getRequest();
471
472             if (getIdentifier().equals(req.getTarget())) {
473                 Verify.verify(req instanceof TransactionRequest, "Unhandled request %s", req);
474                 LOG.debug("Forwarding queued request{} to successor {}", req, successor);
475                 successor.handleForwardedRemoteRequest((TransactionRequest<?>) req, e.getCallback());
476                 it.remove();
477             }
478         }
479
480         /*
481          * Check the state at which we have started the reconnect attempt. State transitions triggered while we were
482          * reconnecting have been forced to slow paths, which will be unlocked once we unblock the state latch
483          * at the end of this method.
484          */
485         final State prevState = local.getPrevState();
486         if (SEALED.equals(prevState)) {
487             LOG.debug("Proxy {} reconnected while being sealed, propagating state to successor {}", this, successor);
488             flushState(successor);
489             successor.seal();
490         }
491     }
492
493     // Called with the connection locked
494     final void finishReconnect() {
495         final SuccessorState local = getSuccessorState();
496         LOG.debug("Finishing reconnect of proxy {}", this);
497
498         // All done, release the latch, unblocking seal() and canCommit() slow paths
499         local.finish();
500     }
501
502     /**
503      * Invoked from a retired connection for requests which have been in-flight and need to be re-adjusted
504      * and forwarded to the successor connection.
505      *
506      * @param request Request to be forwarded
507      * @param callback Original callback
508      */
509     final void replayRequest(final TransactionRequest<?> request, final Consumer<Response<?, ?>> callback) {
510         final AbstractProxyTransaction successor = getSuccessorState().getSuccessor();
511
512         if (successor instanceof LocalProxyTransaction) {
513             forwardToLocal((LocalProxyTransaction)successor, request, callback);
514         } else if (successor instanceof RemoteProxyTransaction) {
515             forwardToRemote((RemoteProxyTransaction)successor, request, callback);
516         } else {
517             throw new IllegalStateException("Unhandled successor " + successor);
518         }
519     }
520
521     abstract boolean isSnapshotOnly();
522
523     abstract void doDelete(final YangInstanceIdentifier path);
524
525     abstract void doMerge(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data);
526
527     abstract void doWrite(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data);
528
529     abstract CheckedFuture<Boolean, ReadFailedException> doExists(final YangInstanceIdentifier path);
530
531     abstract CheckedFuture<Optional<NormalizedNode<?, ?>>, ReadFailedException> doRead(
532             final YangInstanceIdentifier path);
533
534     abstract void doSeal();
535
536     abstract void doAbort();
537
538     @GuardedBy("this")
539     abstract void flushState(AbstractProxyTransaction successor);
540
541     abstract TransactionRequest<?> commitRequest(boolean coordinated);
542
543     /**
544      * Invoked from {@link RemoteProxyTransaction} when it replays its successful requests to its successor. There is
545      * no equivalent of this call from {@link LocalProxyTransaction} because it does not send a request until all
546      * operations are packaged in the message.
547      *
548      * <p>
549      * Note: this method is invoked by the predecessor on the successor.
550      *
551      * @param request Request which needs to be forwarded
552      * @param callback Callback to be invoked once the request completes
553      */
554     abstract void handleForwardedRemoteRequest(TransactionRequest<?> request,
555             @Nullable Consumer<Response<?, ?>> callback);
556
557     /**
558      * Replay a request originating in this proxy to a successor remote proxy.
559      */
560     abstract void forwardToRemote(RemoteProxyTransaction successor, TransactionRequest<?> request,
561             Consumer<Response<?, ?>> callback);
562
563     /**
564      * Replay a request originating in this proxy to a successor local proxy.
565      */
566     abstract void forwardToLocal(LocalProxyTransaction successor, TransactionRequest<?> request,
567             Consumer<Response<?, ?>> callback);
568 }