BUG-5280: expose queue messages during reconnect
[controller.git] / opendaylight / md-sal / sal-distributed-datastore / src / main / java / org / opendaylight / controller / cluster / databroker / actors / dds / AbstractProxyTransaction.java
1 /*
2  * Copyright (c) 2016 Cisco Systems, Inc. and others.  All rights reserved.
3  *
4  * This program and the accompanying materials are made available under the
5  * terms of the Eclipse Public License v1.0 which accompanies this distribution,
6  * and is available at http://www.eclipse.org/legal/epl-v10.html
7  */
8 package org.opendaylight.controller.cluster.databroker.actors.dds;
9
10 import akka.actor.ActorRef;
11 import com.google.common.base.Optional;
12 import com.google.common.base.Preconditions;
13 import com.google.common.base.Throwables;
14 import com.google.common.base.Verify;
15 import com.google.common.util.concurrent.CheckedFuture;
16 import com.google.common.util.concurrent.ListenableFuture;
17 import com.google.common.util.concurrent.SettableFuture;
18 import java.util.ArrayDeque;
19 import java.util.Deque;
20 import java.util.Iterator;
21 import java.util.concurrent.CountDownLatch;
22 import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
23 import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
24 import java.util.function.Consumer;
25 import javax.annotation.Nonnull;
26 import javax.annotation.Nullable;
27 import javax.annotation.concurrent.GuardedBy;
28 import javax.annotation.concurrent.NotThreadSafe;
29 import org.opendaylight.controller.cluster.access.client.ConnectionEntry;
30 import org.opendaylight.controller.cluster.access.commands.TransactionAbortRequest;
31 import org.opendaylight.controller.cluster.access.commands.TransactionAbortSuccess;
32 import org.opendaylight.controller.cluster.access.commands.TransactionCanCommitSuccess;
33 import org.opendaylight.controller.cluster.access.commands.TransactionCommitSuccess;
34 import org.opendaylight.controller.cluster.access.commands.TransactionDoCommitRequest;
35 import org.opendaylight.controller.cluster.access.commands.TransactionPreCommitRequest;
36 import org.opendaylight.controller.cluster.access.commands.TransactionPreCommitSuccess;
37 import org.opendaylight.controller.cluster.access.commands.TransactionRequest;
38 import org.opendaylight.controller.cluster.access.concepts.Request;
39 import org.opendaylight.controller.cluster.access.concepts.RequestFailure;
40 import org.opendaylight.controller.cluster.access.concepts.Response;
41 import org.opendaylight.controller.cluster.access.concepts.TransactionIdentifier;
42 import org.opendaylight.mdsal.common.api.ReadFailedException;
43 import org.opendaylight.yangtools.concepts.Identifiable;
44 import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier;
45 import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode;
46 import org.slf4j.Logger;
47 import org.slf4j.LoggerFactory;
48
49 /**
50  * Class translating transaction operations towards a particular backend shard.
51  *
52  * <p>
53  * This class is not safe to access from multiple application threads, as is usual for transactions. Internal state
54  * transitions coming from interactions with backend are expected to be thread-safe.
55  *
56  * <p>
57  * This class interacts with the queueing mechanism in ClientActorBehavior, hence once we arrive at a decision
58  * to use either a local or remote implementation, we are stuck with it. We can re-evaluate on the next transaction.
59  *
60  * @author Robert Varga
61  */
62 abstract class AbstractProxyTransaction implements Identifiable<TransactionIdentifier> {
63     /**
64      * Marker object used instead of read-type of requests, which are satisfied only once. This has a lower footprint
65      * and allows compressing multiple requests into a single entry.
66      */
67     @NotThreadSafe
68     private static final class IncrementSequence {
69         private long delta = 1;
70
71         long getDelta() {
72             return delta;
73         }
74
75         void incrementDelta() {
76             delta++;
77         }
78     }
79
80     // Generic state base class. Direct instances are used for fast paths, sub-class is used for successor transitions
81     private static class State {
82         private final String string;
83
84         State(final String string) {
85             this.string = Preconditions.checkNotNull(string);
86         }
87
88         @Override
89         public final String toString() {
90             return string;
91         }
92     }
93
94     // State class used when a successor has interfered. Contains coordinator latch, the successor and previous state
95     private static final class SuccessorState extends State {
96         private final CountDownLatch latch = new CountDownLatch(1);
97         private AbstractProxyTransaction successor;
98         private State prevState;
99
100         SuccessorState() {
101             super("successor");
102         }
103
104         // Synchronize with succession process and return the successor
105         AbstractProxyTransaction await() {
106             try {
107                 latch.await();
108             } catch (InterruptedException e) {
109                 LOG.warn("Interrupted while waiting for latch of {}", successor);
110                 throw Throwables.propagate(e);
111             }
112             return successor;
113         }
114
115         void finish() {
116             latch.countDown();
117         }
118
119         State getPrevState() {
120             return prevState;
121         }
122
123         void setPrevState(final State prevState) {
124             Verify.verify(this.prevState == null);
125             this.prevState = Preconditions.checkNotNull(prevState);
126         }
127
128         // To be called from safe contexts, where successor is known to be completed
129         AbstractProxyTransaction getSuccessor() {
130             return Verify.verifyNotNull(successor);
131         }
132
133         void setSuccessor(final AbstractProxyTransaction successor) {
134             Verify.verify(this.successor == null);
135             this.successor = Preconditions.checkNotNull(successor);
136         }
137     }
138
139     private static final Logger LOG = LoggerFactory.getLogger(AbstractProxyTransaction.class);
140     private static final AtomicIntegerFieldUpdater<AbstractProxyTransaction> SEALED_UPDATER =
141             AtomicIntegerFieldUpdater.newUpdater(AbstractProxyTransaction.class, "sealed");
142     private static final AtomicReferenceFieldUpdater<AbstractProxyTransaction, State> STATE_UPDATER =
143             AtomicReferenceFieldUpdater.newUpdater(AbstractProxyTransaction.class, State.class, "state");
144     private static final State OPEN = new State("open");
145     private static final State SEALED = new State("sealed");
146     private static final State FLUSHED = new State("flushed");
147
148     // Touched from client actor thread only
149     private final Deque<Object> successfulRequests = new ArrayDeque<>();
150     private final ProxyHistory parent;
151
152     // Accessed from user thread only, which may not access this object concurrently
153     private long sequence;
154
155     /*
156      * Atomic state-keeping is required to synchronize the process of propagating completed transaction state towards
157      * the backend -- which may include a successor.
158      *
159      * Successor, unlike {@link AbstractProxyTransaction#seal()} is triggered from the client actor thread, which means
160      * the successor placement needs to be atomic with regard to the application thread.
161      *
162      * In the common case, the application thread performs performs the seal operations and then "immediately" sends
163      * the corresponding message. The uncommon case is when the seal and send operations race with a connect completion
164      * or timeout, when a successor is injected.
165      *
166      * This leaves the problem of needing to completely transferring state just after all queued messages are replayed
167      * after a successor was injected, so that it can be properly sealed if we are racing. Further complication comes
168      * from lock ordering, where the successor injection works with a locked queue and locks proxy objects -- leading
169      * to a potential AB-BA deadlock in case of a naive implementation.
170      *
171      * For tracking user-visible state we use a single volatile int, which is flipped atomically from 0 to 1 exactly
172      * once in {@link AbstractProxyTransaction#seal()}. That keeps common operations fast, as they need to perform
173      * only a single volatile read to assert state correctness.
174      *
175      * For synchronizing client actor (successor-injecting) and user (commit-driving) thread, we keep a separate state
176      * variable. It uses pre-allocated objects for fast paths (i.e. no successor present) and a per-transition object
177      * for slow paths (when successor is injected/present).
178      */
179     private volatile int sealed = 0;
180     private volatile State state = OPEN;
181
182     AbstractProxyTransaction(final ProxyHistory parent) {
183         this.parent = Preconditions.checkNotNull(parent);
184     }
185
186     final ActorRef localActor() {
187         return parent.localActor();
188     }
189
190     private void incrementSequence(final long delta) {
191         sequence += delta;
192         LOG.debug("Transaction {} incremented sequence to {}", this, sequence);
193     }
194
195     final long nextSequence() {
196         final long ret = sequence++;
197         LOG.debug("Transaction {} allocated sequence {}", this, ret);
198         return ret;
199     }
200
201     final void delete(final YangInstanceIdentifier path) {
202         checkNotSealed();
203         doDelete(path);
204     }
205
206     final void merge(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data) {
207         checkNotSealed();
208         doMerge(path, data);
209     }
210
211     final void write(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data) {
212         checkNotSealed();
213         doWrite(path, data);
214     }
215
216     final CheckedFuture<Boolean, ReadFailedException> exists(final YangInstanceIdentifier path) {
217         checkNotSealed();
218         return doExists(path);
219     }
220
221     final CheckedFuture<Optional<NormalizedNode<?, ?>>, ReadFailedException> read(final YangInstanceIdentifier path) {
222         checkNotSealed();
223         return doRead(path);
224     }
225
226     final void sendRequest(final TransactionRequest<?> request, final Consumer<Response<?, ?>> callback) {
227         LOG.debug("Transaction proxy {} sending request {} callback {}", this, request, callback);
228         parent.sendRequest(request, callback);
229     }
230
231     /**
232      * Seal this transaction before it is either committed or aborted.
233      */
234     final void seal() {
235         // Transition user-visible state first
236         final boolean success = SEALED_UPDATER.compareAndSet(this, 0, 1);
237         Preconditions.checkState(success, "Proxy %s was already sealed", getIdentifier());
238         doSeal();
239         parent.onTransactionSealed(this);
240
241         // Now deal with state transfer, which can occur via successor or a follow-up canCommit() or directCommit().
242         if (!STATE_UPDATER.compareAndSet(this, OPEN, SEALED)) {
243             // Slow path: wait for the successor to complete
244             final AbstractProxyTransaction successor = awaitSuccessor();
245
246             // At this point the successor has completed transition and is possibly visible by the user thread, which is
247             // still stuck here. The successor has not seen final part of our state, nor the fact it is sealed.
248             // Propagate state and seal the successor.
249             flushState(successor);
250             successor.seal();
251         }
252     }
253
254     private void checkNotSealed() {
255         Preconditions.checkState(sealed == 0, "Transaction %s has already been sealed", getIdentifier());
256     }
257
258     private void checkSealed() {
259         Preconditions.checkState(sealed != 0, "Transaction %s has not been sealed yet", getIdentifier());
260     }
261
262     private SuccessorState getSuccessorState() {
263         final State local = state;
264         Verify.verify(local instanceof SuccessorState, "State %s has unexpected class", local);
265         return (SuccessorState) local;
266     }
267
268     final void recordSuccessfulRequest(final @Nonnull TransactionRequest<?> req) {
269         successfulRequests.add(Verify.verifyNotNull(req));
270     }
271
272     final void recordFinishedRequest() {
273         final Object last = successfulRequests.peekLast();
274         if (last instanceof IncrementSequence) {
275             ((IncrementSequence) last).incrementDelta();
276         } else {
277             successfulRequests.addLast(new IncrementSequence());
278         }
279     }
280
281     /**
282      * Abort this transaction. This is invoked only for read-only transactions and will result in an explicit message
283      * being sent to the backend.
284      */
285     final void abort() {
286         checkNotSealed();
287         doAbort();
288         parent.abortTransaction(this);
289     }
290
291     final void abort(final VotingFuture<Void> ret) {
292         checkSealed();
293
294         sendAbort(t -> {
295             if (t instanceof TransactionAbortSuccess) {
296                 ret.voteYes();
297             } else if (t instanceof RequestFailure) {
298                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
299             } else {
300                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
301             }
302
303             // This is a terminal request, hence we do not need to record it
304             LOG.debug("Transaction {} abort completed", this);
305             parent.completeTransaction(this);
306         });
307     }
308
309     final void sendAbort(final Consumer<Response<?, ?>> callback) {
310         sendRequest(new TransactionAbortRequest(getIdentifier(), nextSequence(), localActor()), callback);
311     }
312
313     /**
314      * Commit this transaction, possibly in a coordinated fashion.
315      *
316      * @param coordinated True if this transaction should be coordinated across multiple participants.
317      * @return Future completion
318      */
319     final ListenableFuture<Boolean> directCommit() {
320         checkSealed();
321
322         // Precludes startReconnect() from interfering with the fast path
323         synchronized (this) {
324             if (STATE_UPDATER.compareAndSet(this, SEALED, FLUSHED)) {
325                 final SettableFuture<Boolean> ret = SettableFuture.create();
326                 sendRequest(Verify.verifyNotNull(commitRequest(false)), t -> {
327                     if (t instanceof TransactionCommitSuccess) {
328                         ret.set(Boolean.TRUE);
329                     } else if (t instanceof RequestFailure) {
330                         ret.setException(((RequestFailure<?, ?>) t).getCause());
331                     } else {
332                         ret.setException(new IllegalStateException("Unhandled response " + t.getClass()));
333                     }
334
335                     // This is a terminal request, hence we do not need to record it
336                     LOG.debug("Transaction {} directCommit completed", this);
337                     parent.completeTransaction(this);
338                 });
339
340                 return ret;
341             }
342         }
343
344         // We have had some interference with successor injection, wait for it to complete and defer to the successor.
345         return awaitSuccessor().directCommit();
346     }
347
348     final void canCommit(final VotingFuture<?> ret) {
349         checkSealed();
350
351         // Precludes startReconnect() from interfering with the fast path
352         synchronized (this) {
353             if (STATE_UPDATER.compareAndSet(this, SEALED, FLUSHED)) {
354                 final TransactionRequest<?> req = Verify.verifyNotNull(commitRequest(true));
355
356                 sendRequest(req, t -> {
357                     if (t instanceof TransactionCanCommitSuccess) {
358                         ret.voteYes();
359                     } else if (t instanceof RequestFailure) {
360                         ret.voteNo(((RequestFailure<?, ?>) t).getCause());
361                     } else {
362                         ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
363                     }
364
365                     recordSuccessfulRequest(req);
366                     LOG.debug("Transaction {} canCommit completed", this);
367                 });
368
369                 return;
370             }
371         }
372
373         // We have had some interference with successor injection, wait for it to complete and defer to the successor.
374         awaitSuccessor().canCommit(ret);
375     }
376
377     private AbstractProxyTransaction awaitSuccessor() {
378         return getSuccessorState().await();
379     }
380
381     final void preCommit(final VotingFuture<?> ret) {
382         checkSealed();
383
384         final TransactionRequest<?> req = new TransactionPreCommitRequest(getIdentifier(), nextSequence(),
385             localActor());
386         sendRequest(req, t -> {
387             if (t instanceof TransactionPreCommitSuccess) {
388                 ret.voteYes();
389             } else if (t instanceof RequestFailure) {
390                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
391             } else {
392                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
393             }
394
395             recordSuccessfulRequest(req);
396             LOG.debug("Transaction {} preCommit completed", this);
397         });
398     }
399
400     final void doCommit(final VotingFuture<?> ret) {
401         checkSealed();
402
403         sendRequest(new TransactionDoCommitRequest(getIdentifier(), nextSequence(), localActor()), t -> {
404             if (t instanceof TransactionCommitSuccess) {
405                 ret.voteYes();
406             } else if (t instanceof RequestFailure) {
407                 ret.voteNo(((RequestFailure<?, ?>) t).getCause());
408             } else {
409                 ret.voteNo(new IllegalStateException("Unhandled response " + t.getClass()));
410             }
411
412             LOG.debug("Transaction {} doCommit completed", this);
413             parent.completeTransaction(this);
414         });
415     }
416
417     // Called with the connection unlocked
418     final synchronized void startReconnect() {
419         // At this point canCommit/directCommit are blocked, we assert a new successor state, retrieving the previous
420         // state. This method is called with the queue still unlocked.
421         final SuccessorState nextState = new SuccessorState();
422         final State prevState = STATE_UPDATER.getAndSet(this, nextState);
423
424         LOG.debug("Start reconnect of proxy {} previous state {}", this, prevState);
425         Verify.verify(!(prevState instanceof SuccessorState), "Proxy %s duplicate reconnect attempt after %s", this,
426             prevState);
427
428         // We have asserted a slow-path state, seal(), canCommit(), directCommit() are forced to slow paths, which will
429         // wait until we unblock nextState's latch before accessing state. Now we record prevState for later use and we
430         // are done.
431         nextState.setPrevState(prevState);
432     }
433
434     // Called with the connection locked
435     final void replayMessages(final AbstractProxyTransaction successor,
436             final Iterable<ConnectionEntry> enqueuedEntries) {
437         final SuccessorState local = getSuccessorState();
438         local.setSuccessor(successor);
439
440         // Replay successful requests first
441         for (Object obj : successfulRequests) {
442             if (obj instanceof TransactionRequest) {
443                 LOG.debug("Forwarding successful request {} to successor {}", obj, successor);
444                 successor.handleForwardedRemoteRequest((TransactionRequest<?>) obj, null);
445             } else {
446                 Verify.verify(obj instanceof IncrementSequence);
447                 successor.incrementSequence(((IncrementSequence) obj).getDelta());
448             }
449         }
450         LOG.debug("{} replayed {} successful requests", getIdentifier(), successfulRequests.size());
451         successfulRequests.clear();
452
453         // Now replay whatever is in the connection
454         final Iterator<ConnectionEntry> it = enqueuedEntries.iterator();
455         while (it.hasNext()) {
456             final ConnectionEntry e = it.next();
457             final Request<?, ?> req = e.getRequest();
458
459             if (getIdentifier().equals(req.getTarget())) {
460                 Verify.verify(req instanceof TransactionRequest, "Unhandled request %s", req);
461                 LOG.debug("Forwarding queued request{} to successor {}", req, successor);
462                 successor.handleForwardedRemoteRequest((TransactionRequest<?>) req, e.getCallback());
463                 it.remove();
464             }
465         }
466
467         /*
468          * Check the state at which we have started the reconnect attempt. State transitions triggered while we were
469          * reconnecting have been forced to slow paths, which will be unlocked once we unblock the state latch
470          * at the end of this method.
471          */
472         final State prevState = local.getPrevState();
473         if (SEALED.equals(prevState)) {
474             LOG.debug("Proxy {} reconnected while being sealed, propagating state to successor {}", this, successor);
475             flushState(successor);
476             successor.seal();
477         }
478     }
479
480     // Called with the connection locked
481     final void finishReconnect() {
482         final SuccessorState local = getSuccessorState();
483         LOG.debug("Finishing reconnect of proxy {}", this);
484
485         // All done, release the latch, unblocking seal() and canCommit() slow paths
486         local.finish();
487     }
488
489     /**
490      * Invoked from a retired connection for requests which have been in-flight and need to be re-adjusted
491      * and forwarded to the successor connection.
492      *
493      * @param request Request to be forwarded
494      * @param callback Original callback
495      */
496     final void replayRequest(final TransactionRequest<?> request, final Consumer<Response<?, ?>> callback) {
497         final AbstractProxyTransaction successor = getSuccessorState().getSuccessor();
498
499         if (successor instanceof LocalProxyTransaction) {
500             forwardToLocal((LocalProxyTransaction)successor, request, callback);
501         } else if (successor instanceof RemoteProxyTransaction) {
502             forwardToRemote((RemoteProxyTransaction)successor, request, callback);
503         } else {
504             throw new IllegalStateException("Unhandled successor " + successor);
505         }
506     }
507
508     abstract void doDelete(final YangInstanceIdentifier path);
509
510     abstract void doMerge(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data);
511
512     abstract void doWrite(final YangInstanceIdentifier path, final NormalizedNode<?, ?> data);
513
514     abstract CheckedFuture<Boolean, ReadFailedException> doExists(final YangInstanceIdentifier path);
515
516     abstract CheckedFuture<Optional<NormalizedNode<?, ?>>, ReadFailedException> doRead(
517             final YangInstanceIdentifier path);
518
519     abstract void doSeal();
520
521     abstract void doAbort();
522
523     @GuardedBy("this")
524     abstract void flushState(AbstractProxyTransaction successor);
525
526     abstract TransactionRequest<?> commitRequest(boolean coordinated);
527
528     /**
529      * Invoked from {@link RemoteProxyTransaction} when it replays its successful requests to its successor. There is
530      * no equivalent of this call from {@link LocalProxyTransaction} because it does not send a request until all
531      * operations are packaged in the message.
532      *
533      * <p>
534      * Note: this method is invoked by the predecessor on the successor.
535      *
536      * @param request Request which needs to be forwarded
537      * @param callback Callback to be invoked once the request completes
538      */
539     abstract void handleForwardedRemoteRequest(TransactionRequest<?> request,
540             @Nullable Consumer<Response<?, ?>> callback);
541
542     /**
543      * Replay a request originating in this proxy to a successor remote proxy.
544      */
545     abstract void forwardToRemote(RemoteProxyTransaction successor, TransactionRequest<?> request,
546             Consumer<Response<?, ?>> callback);
547
548     /**
549      * Replay a request originating in this proxy to a successor local proxy.
550      */
551     abstract void forwardToLocal(LocalProxyTransaction successor, TransactionRequest<?> request,
552             Consumer<Response<?, ?>> callback);
553 }