/* * Copyright (c) 2016 Cisco Systems, Inc. and others. All rights reserved. * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 which accompanies this distribution, * and is available at http://www.eclipse.org/legal/epl-v10.html */ package org.opendaylight.controller.cluster.databroker.actors.dds; import static com.google.common.base.Preconditions.checkState; import com.google.common.annotations.Beta; import com.google.common.util.concurrent.FluentFuture; import java.util.Collection; import java.util.Map; import java.util.Optional; import org.eclipse.jdt.annotation.NonNull; import org.opendaylight.controller.cluster.access.concepts.TransactionIdentifier; import org.opendaylight.controller.cluster.datastore.utils.RootScatterGather; import org.opendaylight.mdsal.dom.spi.store.DOMStoreThreePhaseCommitCohort; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier.PathArgument; import org.opendaylight.yangtools.yang.data.api.schema.ContainerNode; import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode; /** * Client-side view of a transaction. * *

* This interface is used by the world outside of the actor system and in the actor system it is manifested via * its client actor. That requires some state transfer with {@link DistributedDataStoreClientBehavior}. In order to * reduce request latency, all messages are carbon-copied (and enqueued first) to the client actor. * *

* It is internally composed of multiple {@link RemoteProxyTransaction}s, each responsible for a component shard. * *

* Implementation is quite a bit complex, and involves cooperation with {@link AbstractClientHistory} for tracking * gaps in transaction identifiers seen by backends. * *

* These gaps need to be accounted for in the transaction setup message sent to a particular backend, so it can verify * that the requested transaction is in-sequence. This is critical in ensuring that transactions (which are independent * entities from message queueing perspective) do not get reodered -- thus allowing multiple in-flight transactions. * *

* Alternative would be to force visibility by sending an abort request to all potential backends, but that would mean * that even empty transactions increase load on all shards -- which would be a scalability issue. * *

* Yet another alternative would be to introduce inter-transaction dependencies to the queueing layer in client actor, * but that would require additional indirection and complexity. * * @author Robert Varga */ @Beta public class ClientTransaction extends AbstractClientHandle { ClientTransaction(final AbstractClientHistory parent, final TransactionIdentifier transactionId) { super(parent, transactionId); } public FluentFuture exists(final YangInstanceIdentifier path) { return ensureProxy(path).exists(path); } public FluentFuture> read(final YangInstanceIdentifier path) { return path.isEmpty() ? readRoot() : ensureProxy(path).read(path); } private FluentFuture> readRoot() { return RootScatterGather.gather(parent().actorUtils(), ensureAllProxies() .map(proxy -> proxy.read(YangInstanceIdentifier.of()))); } public void delete(final YangInstanceIdentifier path) { if (path.isEmpty()) { ensureAllProxies().forEach(proxy -> proxy.delete(YangInstanceIdentifier.of())); } else { ensureProxy(path).delete(path); } } public void merge(final YangInstanceIdentifier path, final NormalizedNode data) { if (path.isEmpty()) { mergeRoot(RootScatterGather.castRootNode(data)); } else { ensureProxy(path).merge(path, data); } } private void mergeRoot(final @NonNull ContainerNode rootData) { if (!rootData.isEmpty()) { RootScatterGather.scatterTouched(rootData, this::ensureProxy).forEach( scattered -> scattered.shard().merge(YangInstanceIdentifier.of(), scattered.container())); } } public void write(final YangInstanceIdentifier path, final NormalizedNode data) { if (path.isEmpty()) { writeRoot(RootScatterGather.castRootNode(data)); } else { ensureProxy(path).write(path, data); } } private void writeRoot(final @NonNull ContainerNode rootData) { RootScatterGather.scatterAll(rootData, this::ensureProxy, ensureAllProxies()).forEach( scattered -> scattered.shard().write(YangInstanceIdentifier.of(), scattered.container())); } private AbstractProxyTransaction ensureProxy(final PathArgument childId) { return ensureProxy(YangInstanceIdentifier.of(childId)); } public DOMStoreThreePhaseCommitCohort ready() { final Map participants = ensureClosed(); checkState(participants != null, "Attempted to submit a closed transaction %s", this); final Collection toReady = participants.values(); toReady.forEach(AbstractProxyTransaction::seal); final TransactionIdentifier txId = getIdentifier(); final AbstractClientHistory parent = parent(); parent.onTransactionShardsBound(txId, participants.keySet()); final AbstractTransactionCommitCohort cohort = switch (toReady.size()) { case 0 -> new EmptyTransactionCommitCohort(parent, txId); case 1 -> new DirectTransactionCommitCohort(parent, txId, toReady.iterator().next()); default -> new ClientTransactionCommitCohort(parent, txId, toReady); }; return parent.onTransactionReady(this, cohort); } @Override final AbstractProxyTransaction createProxy(final Long shard) { return parent().createTransactionProxy(getIdentifier(), shard); } }