/* * Copyright (c) 2014 Cisco Systems, Inc. and others. All rights reserved. * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 which accompanies this distribution, * and is available at http://www.eclipse.org/legal/epl-v10.html */ package org.opendaylight.controller.md.sal.dom.broker.impl; import com.google.common.base.Optional; import com.google.common.base.Preconditions; import com.google.common.base.Verify; import com.google.common.util.concurrent.CheckedFuture; import com.google.common.util.concurrent.FutureCallback; import com.google.common.util.concurrent.Futures; import com.google.common.util.concurrent.ListenableFuture; import com.google.common.util.concurrent.MoreExecutors; import java.util.AbstractMap.SimpleImmutableEntry; import java.util.Map.Entry; import java.util.concurrent.CancellationException; import java.util.concurrent.atomic.AtomicReferenceFieldUpdater; import javax.annotation.Nonnull; import javax.annotation.concurrent.GuardedBy; import org.opendaylight.controller.md.sal.common.api.TransactionStatus; import org.opendaylight.controller.md.sal.common.api.data.AsyncTransaction; import org.opendaylight.controller.md.sal.common.api.data.LogicalDatastoreType; import org.opendaylight.controller.md.sal.common.api.data.ReadFailedException; import org.opendaylight.controller.md.sal.common.api.data.TransactionChain; import org.opendaylight.controller.md.sal.common.api.data.TransactionChainListener; import org.opendaylight.controller.md.sal.common.api.data.TransactionCommitFailedException; import org.opendaylight.controller.md.sal.dom.api.DOMDataBroker; import org.opendaylight.controller.md.sal.dom.api.DOMDataReadOnlyTransaction; import org.opendaylight.controller.md.sal.dom.api.DOMDataReadWriteTransaction; import org.opendaylight.controller.md.sal.dom.api.DOMDataWriteTransaction; import org.opendaylight.controller.md.sal.dom.api.DOMTransactionChain; import org.opendaylight.controller.md.sal.dom.spi.ForwardingDOMDataReadWriteTransaction; import org.opendaylight.yangtools.yang.common.RpcResult; import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier; import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * An implementation of {@link DOMTransactionChain}, which has a very specific * behavior, which some users may find surprising. If keeps the general * intent of the contract, but it makes sure there are never more than two * transactions allocated at any given time: one of them is being committed, * and while that is happening, the other one acts as the scratch pad. Once * the committing transaction completes successfully, the scratch transaction * is enqueued as soon as it is ready. * *

* This mode of operation means that there is no inherent isolation between * the front-end transactions and transactions cannot be reasonably cancelled. * *

* It furthermore means that the transactions returned by {@link #newReadOnlyTransaction()} * counts as an outstanding transaction and the user may not allocate multiple * read-only transactions at the same time. */ public final class PingPongTransactionChain implements DOMTransactionChain { private static final Logger LOG = LoggerFactory.getLogger(PingPongTransactionChain.class); private final TransactionChainListener listener; private final DOMTransactionChain delegate; @GuardedBy("this") private boolean failed; @GuardedBy("this") private PingPongTransaction shutdownTx; @GuardedBy("this") private Entry deadTx; /** * This updater is used to manipulate the "ready" transaction. We perform only atomic * get-and-set on it. */ private static final AtomicReferenceFieldUpdater READY_UPDATER = AtomicReferenceFieldUpdater .newUpdater(PingPongTransactionChain.class, PingPongTransaction.class, "readyTx"); private volatile PingPongTransaction readyTx; /** * This updater is used to manipulate the "locked" transaction. A locked transaction * means we know that the user still holds a transaction and should at some point call * us. We perform on compare-and-swap to ensure we properly detect when a user is * attempting to allocated multiple transactions concurrently. */ private static final AtomicReferenceFieldUpdater LOCKED_UPDATER = AtomicReferenceFieldUpdater .newUpdater(PingPongTransactionChain.class, PingPongTransaction.class, "lockedTx"); private volatile PingPongTransaction lockedTx; /** * This updater is used to manipulate the "inflight" transaction. There can be at most * one of these at any given time. We perform only compare-and-swap on these. */ private static final AtomicReferenceFieldUpdater INFLIGHT_UPDATER = AtomicReferenceFieldUpdater .newUpdater(PingPongTransactionChain.class, PingPongTransaction.class, "inflightTx"); private volatile PingPongTransaction inflightTx; PingPongTransactionChain(final DOMDataBroker broker, final TransactionChainListener listener) { this.listener = Preconditions.checkNotNull(listener); this.delegate = broker.createTransactionChain(new TransactionChainListener() { @Override public void onTransactionChainFailed(final TransactionChain chain, final AsyncTransaction transaction, final Throwable cause) { LOG.debug("Transaction chain {} reported failure in {}", chain, transaction, cause); delegateFailed(chain, cause); } @Override public void onTransactionChainSuccessful(final TransactionChain chain) { delegateSuccessful(chain); } }); } void delegateSuccessful(final TransactionChain chain) { final Entry canceled; synchronized (this) { // This looks weird, but we need not hold the lock while invoking callbacks canceled = deadTx; } if (canceled == null) { listener.onTransactionChainSuccessful(this); return; } // Backend shutdown successful, but we have a batch of transactions we have to report as dead due to the // user calling cancel(). final PingPongTransaction tx = canceled.getKey(); final Throwable cause = canceled.getValue(); LOG.debug("Transaction chain {} successful, failing cancelled transaction {}", chain, tx, cause); listener.onTransactionChainFailed(this, tx.getFrontendTransaction(), cause); tx.onFailure(cause); } void delegateFailed(final TransactionChain chain, final Throwable cause) { final DOMDataReadWriteTransaction frontend; final PingPongTransaction tx = inflightTx; if (tx == null) { LOG.warn("Transaction chain {} failed with no pending transactions", chain); frontend = null; } else { frontend = tx.getFrontendTransaction(); } listener.onTransactionChainFailed(this, frontend, cause); synchronized (this) { failed = true; /* * If we do not have a locked transaction, we need to ensure that * the backend transaction is cancelled. Otherwise we can defer * until the user calls us. */ if (lockedTx == null) { processIfReady(); } } } private synchronized PingPongTransaction slowAllocateTransaction() { Preconditions.checkState(shutdownTx == null, "Transaction chain %s has been shut down", this); if (deadTx != null) { throw new IllegalStateException( String.format("Transaction chain %s has failed due to transaction %s being canceled", this, deadTx.getKey()), deadTx.getValue()); } final DOMDataReadWriteTransaction delegateTx = delegate.newReadWriteTransaction(); final PingPongTransaction newTx = new PingPongTransaction(delegateTx); if (!LOCKED_UPDATER.compareAndSet(this, null, newTx)) { delegateTx.cancel(); throw new IllegalStateException( String.format("New transaction %s raced with transaction %s", newTx, lockedTx)); } return newTx; } private PingPongTransaction allocateTransaction() { // Step 1: acquire current state final PingPongTransaction oldTx = READY_UPDATER.getAndSet(this, null); // Slow path: allocate a delegate transaction if (oldTx == null) { return slowAllocateTransaction(); } // Fast path: reuse current transaction. We will check failures and similar on submit(). if (!LOCKED_UPDATER.compareAndSet(this, null, oldTx)) { // Ouch. Delegate chain has not detected a duplicate transaction allocation. This is the best we can do. oldTx.getTransaction().cancel(); throw new IllegalStateException( String.format("Reusable transaction %s raced with transaction %s", oldTx, lockedTx)); } return oldTx; } /* * This forces allocateTransaction() on a slow path, which has to happen after * this method has completed executing. Also inflightTx may be updated outside * the lock, hence we need to re-check. */ @GuardedBy("this") private void processIfReady() { if (inflightTx == null) { final PingPongTransaction tx = READY_UPDATER.getAndSet(this, null); if (tx != null) { processTransaction(tx); } } } /** * Process a ready transaction. The caller needs to ensure that * each transaction is seen only once by this method. * * @param tx Transaction which needs processing. */ @GuardedBy("this") private void processTransaction(@Nonnull final PingPongTransaction tx) { if (failed) { LOG.debug("Cancelling transaction {}", tx); tx.getTransaction().cancel(); return; } LOG.debug("Submitting transaction {}", tx); if (!INFLIGHT_UPDATER.compareAndSet(this, null, tx)) { LOG.warn("Submitting transaction {} while {} is still running", tx, inflightTx); } Futures.addCallback(tx.getTransaction().submit(), new FutureCallback() { @Override public void onSuccess(final Void result) { transactionSuccessful(tx, result); } @Override public void onFailure(final Throwable throwable) { transactionFailed(tx, throwable); } }, MoreExecutors.directExecutor()); } /* * We got invoked from the data store thread. We need to do two things: * 1) release the in-flight transaction * 2) process the potential next transaction * * We have to perform 2) under lock. We could perform 1) without locking, but that means the CAS result may * not be accurate, as a user thread may submit the ready transaction before we acquire the lock -- and checking * for next transaction is not enough, as that may have also be allocated (as a result of a quick * submit/allocate/submit between 1) and 2)). Hence we'd end up doing the following: * 1) CAS of inflightTx * 2) take lock * 3) volatile read of inflightTx * * Rather than doing that, we keep this method synchronized, hence performing only: * 1) take lock * 2) CAS of inflightTx * * Since the user thread is barred from submitting the transaction (in processIfReady), we can then proceed with * the knowledge that inflightTx is null -- processTransaction() will still do a CAS, but that is only for * correctness. */ private synchronized void processNextTransaction(final PingPongTransaction tx) { final boolean success = INFLIGHT_UPDATER.compareAndSet(this, tx, null); Preconditions.checkState(success, "Completed transaction %s while %s was submitted", tx, inflightTx); final PingPongTransaction nextTx = READY_UPDATER.getAndSet(this, null); if (nextTx != null) { processTransaction(nextTx); } else if (shutdownTx != null) { processTransaction(shutdownTx); delegate.close(); shutdownTx = null; } } void transactionSuccessful(final PingPongTransaction tx, final Void result) { LOG.debug("Transaction {} completed successfully", tx); tx.onSuccess(result); processNextTransaction(tx); } void transactionFailed(final PingPongTransaction tx, final Throwable throwable) { LOG.debug("Transaction {} failed", tx, throwable); tx.onFailure(throwable); processNextTransaction(tx); } void readyTransaction(@Nonnull final PingPongTransaction tx) { // First mark the transaction as not locked. final boolean lockedMatch = LOCKED_UPDATER.compareAndSet(this, tx, null); Preconditions.checkState(lockedMatch, "Attempted to submit transaction %s while we have %s", tx, lockedTx); LOG.debug("Transaction {} unlocked", tx); /* * The transaction is ready. It will then be picked up by either next allocation, * or a background transaction completion callback. */ final boolean success = READY_UPDATER.compareAndSet(this, null, tx); Preconditions.checkState(success, "Transaction %s collided on ready state", tx, readyTx); LOG.debug("Transaction {} readied", tx); /* * We do not see a transaction being in-flight, so we need to take care of dispatching * the transaction to the backend. We are in the ready case, we cannot short-cut * the checking of readyTx, as an in-flight transaction may have completed between us * setting the field above and us checking. */ if (inflightTx == null) { synchronized (this) { processIfReady(); } } } /** * Transaction cancellation is a heavyweight operation. We only support cancelation of a locked transaction * and return false for everything else. Cancelling such a transaction will result in all transactions in the * batch to be cancelled. * * @param tx Backend shared transaction * @param frontendTx transaction * @param isOpen indicator whether the transaction was already closed */ synchronized void cancelTransaction(final PingPongTransaction tx, final DOMDataReadWriteTransaction frontendTx) { // Attempt to unlock the operation. final boolean lockedMatch = LOCKED_UPDATER.compareAndSet(this, tx, null); Verify.verify(lockedMatch, "Cancelling transaction %s collided with locked transaction %s", tx, lockedTx); // Cancel the backend transaction, so we do not end up leaking it. final boolean backendCancelled = tx.getTransaction().cancel(); if (failed) { // The transaction has failed, this is probably the user just clearing up the transaction they had. We have // already cancelled the transaction anyway, return; } else if (!backendCancelled) { LOG.warn("Backend transaction cannot be cancelled during cancellation of {}, attempting to continue", tx); } // We have dealt with canceling the backend transaction and have unlocked the transaction. Since we are still // inside the synchronized block, any allocations are blocking on the slow path. Now we have to decide the fate // of this transaction chain. // // If there are no other frontend transactions in this batch we are aligned with backend state and we can // continue processing. if (frontendTx.equals(tx.getFrontendTransaction())) { LOG.debug("Cancelled transaction {} was head of the batch, resuming processing", tx); return; } // There are multiple frontend transactions in this batch. We have to report them as failed, which dooms this // transaction chain, too. Since we just came off of a locked transaction, we do not have a ready transaction // at the moment, but there may be some transaction in-flight. So we proceed to shutdown the backend chain // and mark the fact that we should be turning its completion into a failure. deadTx = new SimpleImmutableEntry<>(tx, new CancellationException("Transaction " + frontendTx + " canceled") .fillInStackTrace()); delegate.close(); } @Override public synchronized void close() { final PingPongTransaction notLocked = lockedTx; Preconditions .checkState(notLocked == null, "Attempted to close chain with outstanding transaction %s", notLocked); // This is not reliable, but if we observe it to be null and the process has already completed, // the backend transaction chain will throw the appropriate error. Preconditions.checkState(shutdownTx == null, "Attempted to close an already-closed chain"); // This may be a reaction to our failure callback, in that case the backend is already shutdown if (deadTx != null) { LOG.debug("Delegate {} is already closed due to failure {}", delegate, deadTx); return; } // Force allocations on slow path, picking up a potentially-outstanding transaction final PingPongTransaction tx = READY_UPDATER.getAndSet(this, null); if (tx != null) { // We have one more transaction, which needs to be processed somewhere. If we do not // a transaction in-flight, we need to push it down ourselves. // If there is an in-flight transaction we will schedule this last one into a dedicated // slot. Allocation slow path will check its presence and fail, the in-flight path will // pick it up, submit and immediately close the chain. if (inflightTx == null) { processTransaction(tx); delegate.close(); } else { shutdownTx = tx; } } else { // Nothing outstanding, we can safely shutdown delegate.close(); } } @Override public DOMDataReadOnlyTransaction newReadOnlyTransaction() { final PingPongTransaction tx = allocateTransaction(); return new DOMDataReadOnlyTransaction() { @Override public CheckedFuture>, ReadFailedException> read( final LogicalDatastoreType store, final YangInstanceIdentifier path) { return tx.getTransaction().read(store, path); } @Override public CheckedFuture exists(final LogicalDatastoreType store, final YangInstanceIdentifier path) { return tx.getTransaction().exists(store, path); } @Override public Object getIdentifier() { return tx.getTransaction().getIdentifier(); } @Override public void close() { readyTransaction(tx); } }; } @Override public DOMDataReadWriteTransaction newReadWriteTransaction() { final PingPongTransaction tx = allocateTransaction(); final DOMDataReadWriteTransaction ret = new ForwardingDOMDataReadWriteTransaction() { private boolean isOpen = true; @Override protected DOMDataReadWriteTransaction delegate() { return tx.getTransaction(); } @Override public CheckedFuture submit() { readyTransaction(tx); isOpen = false; return tx.getSubmitFuture(); } @Deprecated @Override public ListenableFuture> commit() { readyTransaction(tx); isOpen = false; return tx.getCommitFuture(); } @Override public boolean cancel() { if (isOpen) { cancelTransaction(tx, this); isOpen = false; return true; } else { return false; } } }; tx.recordFrontendTransaction(ret); return ret; } @Override public DOMDataWriteTransaction newWriteOnlyTransaction() { return newReadWriteTransaction(); } }