Remove deprecated MD-SAL APIs
[controller.git] / opendaylight / md-sal / sal-common-api / src / main / java / org / opendaylight / controller / md / sal / common / api / data / AsyncReadWriteTransaction.java
diff --git a/opendaylight/md-sal/sal-common-api/src/main/java/org/opendaylight/controller/md/sal/common/api/data/AsyncReadWriteTransaction.java b/opendaylight/md-sal/sal-common-api/src/main/java/org/opendaylight/controller/md/sal/common/api/data/AsyncReadWriteTransaction.java
deleted file mode 100644 (file)
index 5babd8c..0000000
+++ /dev/null
@@ -1,142 +0,0 @@
-/*
- * Copyright (c) 2014 Cisco Systems, Inc. and others.  All rights reserved.
- *
- * This program and the accompanying materials are made available under the
- * terms of the Eclipse Public License v1.0 which accompanies this distribution,
- * and is available at http://www.eclipse.org/legal/epl-v10.html
- */
-package org.opendaylight.controller.md.sal.common.api.data;
-
-import org.opendaylight.yangtools.concepts.Path;
-
-/**
- * Transaction enabling a client to have a combined read/write capabilities.
- *
- * <p>
- * The initial state of the write transaction is stable snapshot of current data tree
- * state captured when transaction was created and it's state and underlying
- * data tree are not affected by other concurrently running transactions.
- *
- * <p>
- * Write transactions are isolated from other concurrent write transactions. All
- * writes are local to the transaction and represents only a proposal of state
- * change for data tree and it is not visible to any other concurrently running
- * transactions.
- *
- * <p>
- * Applications publish the changes proposed in the transaction by calling {@link #submit}
- * on the transaction. This seals the transaction
- * (preventing any further writes using this transaction) and submits it to be
- * processed and applied to global conceptual data tree.
- *
- * <p>
- * The transaction commit may fail due to a concurrent transaction modifying and committing data in
- * an incompatible way. See {@link #submit()} for more concrete commit failure examples.
- *
- * <b>Implementation Note:</b> This interface is not intended to be implemented
- * by users of MD-SAL, but only to be consumed by them.
- *
- * <h2>Examples</h2>
- *
- * <h3>Transaction local state</h3>
- *
- * <p>
- * Let assume initial state of data tree for <code>PATH</code> is <code>A</code>
- * .
- *
- * <pre>
- * txWrite = broker.newReadWriteTransaction(); // concurrent write transaction
- *
- * txWrite.read(OPERATIONAL,PATH).get()        // will return Optional containing A
- * txWrite.put(OPERATIONAL,PATH,B);            // writes B to PATH
- * txWrite.read(OPERATIONAL,PATH).get()        // will return Optional Containing B
- *
- * txWrite.commit().get();                     // data tree is updated, PATH contains B
- *
- * tx1afterCommit = broker.newReadOnlyTransaction(); // read Transaction is snapshot of new state
- * tx1afterCommit.read(OPERATIONAL,PATH).get(); // returns Optional containing B
- * </pre>
- *
- * <p>
- * As you could see read-write transaction provides capabilities as
- * {@link AsyncWriteTransaction} but also allows for reading proposed changes as
- * if they already happened.
- *
- * <h3>Transaction isolation (read transaction, read-write transaction)</h3> Let
- * assume initial state of data tree for <code>PATH</code> is <code>A</code>.
- *
- * <pre>
- * txRead = broker.newReadOnlyTransaction();   // read Transaction is snapshot of data
- * txWrite = broker.newReadWriteTransaction(); // concurrent write transaction
- *
- * txRead.read(OPERATIONAL,PATH).get();        // will return Optional containing A
- * txWrite.read(OPERATIONAL,PATH).get()        // will return Optional containing A
- *
- * txWrite.put(OPERATIONAL,PATH,B);            // writes B to PATH
- * txWrite.read(OPERATIONAL,PATH).get()        // will return Optional Containing B
- *
- * txRead.read(OPERATIONAL,PATH).get();        // concurrent read transaction still returns
- *                                             // Optional containing A
- *
- * txWrite.commit().get();                     // data tree is updated, PATH contains B
- * txRead.read(OPERATIONAL,PATH).get();        // still returns Optional containing A
- *
- * tx1afterCommit = broker.newReadOnlyTransaction(); // read Transaction is snapshot of new state
- * tx1afterCommit.read(OPERATIONAL,PATH).get(); // returns Optional containing B
- * </pre>
- *
- * <h3>Transaction isolation (2 concurrent read-write transactions)</h3> Let
- * assume initial state of data tree for <code>PATH</code> is <code>A</code>.
- *
- * <pre>
- * tx1 = broker.newReadWriteTransaction(); // read Transaction is snapshot of data
- * tx2 = broker.newReadWriteTransaction(); // concurrent write transaction
- *
- * tx1.read(OPERATIONAL,PATH).get();       // will return Optional containing A
- * tx2.read(OPERATIONAL,PATH).get()        // will return Optional containing A
- *
- * tx2.put(OPERATIONAL,PATH,B);            // writes B to PATH
- * tx2.read(OPERATIONAL,PATH).get()        // will return Optional Containing B
- *
- * tx1.read(OPERATIONAL,PATH).get();       // tx1 read-write transaction still sees Optional
- *                                         // containing A since is isolated from tx2
- * tx1.put(OPERATIONAL,PATH,C);            // writes C to PATH
- * tx1.read(OPERATIONAL,PATH).get()        // will return Optional Containing C
- *
- * tx2.read(OPERATIONAL,PATH).get()        // tx2 read-write transaction still sees Optional
- *                                         // containing B since is isolated from tx1
- *
- * tx2.commit().get();                     // data tree is updated, PATH contains B
- * tx1.read(OPERATIONAL,PATH).get();       // still returns Optional containing C since is isolated from tx2
- *
- * tx1afterCommit = broker.newReadOnlyTransaction(); // read Transaction is snapshot of new state
- * tx1afterCommit.read(OPERATIONAL,PATH).get(); // returns Optional containing B
- *
- * tx1.commit()                            // Will fail with OptimisticLockFailedException
- *                                         // which means concurrent transaction changed the same PATH
- *
- * </pre>
- *
- * <p>
- * <b>Note:</b> examples contains blocking calls on future only to illustrate
- * that action happened after other asynchronous action. Use of blocking call
- * {@link com.google.common.util.concurrent.ListenableFuture#get()} is discouraged for most uses and you should
- * use {@link com.google.common.util.concurrent.Futures#addCallback(com.google.common.util.concurrent.ListenableFuture,
- * com.google.common.util.concurrent.FutureCallback, java.util.concurrent.Executor)}
- * or other functions from {@link com.google.common.util.concurrent.Futures} to
- * register more specific listeners.
- *
- * @see AsyncReadTransaction
- * @see AsyncWriteTransaction
- *
- * @param <P>
- *            Type of path (subtree identifier), which represents location in
- *            tree
- * @param <D>
- *            Type of data (payload), which represents data payload
- */
-@Deprecated(forRemoval = true)
-public interface AsyncReadWriteTransaction<P extends Path<P>, D> extends AsyncReadTransaction<P, D>,
-        AsyncWriteTransaction<P, D> {
-
-}